【題目】已知函數(shù),.
(Ⅰ)討論單調區(qū)間;
(Ⅱ)若直線是函數(shù)圖象的切線,求的最小值.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)求導后,討論、、時、的解集即可得解;
(Ⅱ)設切點為,利用導數(shù)的幾何意義求得切線方程,由題意,,令,求導后求得的最小值即可得解.
(Ⅰ)由題意,
則,
令,
①當時,,函數(shù)在上單調遞增;
②當時,,
若即,即,函數(shù)在上單調遞增;
若即,令可得,
所以當時,,函數(shù)在上單調遞增;
③當時,,
令可得,,
所以當時,,函數(shù)單調遞增;
當時,,函數(shù)單調遞減.
綜上,當時,函數(shù)的單調遞增區(qū)間為;當時,函數(shù)單調遞增區(qū)間為,單調遞減區(qū)間為;
(Ⅱ)由題意,設切點為,
則,切線方程為,
即,
所以,,,
令,則,
令,則,
所以當時,,單調遞減;
當時,,單調遞增;
所以即的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的個數(shù)為( )
①兩個有共同始點且相等的向量,其終點可能不同;
②若非零向量與共線,則、、、四點共線;
③若非零向量與共線,則;
④四邊形是平行四邊形,則必有;
⑤,則、方向相同或相反.
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,數(shù)列的前項和為,滿足,,,且.若存在,使得成立,則實數(shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某親子游戲結束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:①若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機玩具一個;②若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;③若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.
(1)求每對親子獲得飛機玩具的概率;
(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若關于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數(shù)據(jù) (成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,求其中成績在區(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統(tǒng)計.為了便于區(qū)別性別,輸入時,男選手的成績數(shù)據(jù)用正數(shù),女選手的成績數(shù)據(jù)用其相反數(shù)(負數(shù)),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值和的統(tǒng)計意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由于研究性學習的需要,中學生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設步數(shù)為)
組別 | 步數(shù)分組 | 頻數(shù) |
2 | ||
10 | ||
2 | ||
(Ⅰ)寫出的值,并回答這20名“微信運動”團隊成員一天行走步數(shù)的中位數(shù)落在哪個組別;
(Ⅱ)記組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為,,試分別比較與以,與的大小;(只需寫出結論)
(Ⅲ)從上述兩個組別的數(shù)據(jù)中任取2個數(shù)據(jù),記這2個數(shù)據(jù)步數(shù)差的絕對值為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com