19.給定矩陣A、B、C,若矩陣A可逆且滿足BA=CA.求證:B=A.

分析 利用AA-1=I,原式兩邊同時(shí)右乘A-1即可.

解答 證明:∵矩陣A可逆,∴AA-1=I(I為單位矩陣),|A|≠0,
又∵BA=CA,∴BAA-1=CAA-1,
即B=C.

點(diǎn)評(píng) 本題考查矩陣的逆矩陣,注意解題方法的積累,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項(xiàng)和,則$\frac{{S}_{3}-{S}_{2}}{{S}_{5}-{S}_{3}}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=ex,若f(x)的圖象的一條切線經(jīng)過(guò)點(diǎn)(-1,0),則這條切線與直線x=1及x軸所圍成的三角形面積為( 。
A.$\frac{2}{e}$B.1C.2D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)定義如下表
 x 1 2 3 4 5
 f(x) 1 4 2 5 3
定義數(shù)列{an}:a0=5,an+1=f(an),n∈N
(1)求a6的值;
(2)求a1+a2+…+a2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sinα-sinβ=$\frac{1}{3}$,cosα+cosβ=$\frac{3}{7}$,0<α,β<$\frac{π}{2}$,求sin$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù),且e=2.71828…),g(x)=$\frac{n}{2}$x+m(m,n∈R).
(Ⅰ)若T(x)=f(x)g(x),m=1-$\frac{n}{2}$,求T(x)在[0,1]上的最大值φ(n)的表達(dá)式;
(Ⅱ)若n=4時(shí)方程f(x)=g(x)在[0,2]上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若m=-$\frac{15}{2}$,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知a,b,x1,x2為正實(shí)數(shù),且滿足a+b=1
(1)求a2+$\frac{b^2}{4}$的最小值.
(2)求證:(ax1+bx2)(bx1+ax2)≥x1x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+2,x≤0}\\{|a-x|,x>0}\end{array}\right.$.若兩條平行直線6x+8y+a=0與3x+by+11=0之間的距離為a,則函數(shù)g(x)=f(x)-ln(x+2)的零點(diǎn)個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x||x-$\frac{1}{2}$|≤$\frac{3}{2}$},B={x|y=lg(4x-x2)},則A∩B等于( 。
A.(0,2]B.[-1,0)C.[2,4)D.[1,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案