分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,可得A,B的直角坐標(biāo),求得AB的斜率,由點斜式方程可得直線方程;
(Ⅱ)運用點到直線的距離公式,結(jié)合三角函數(shù)的輔助角公式,由正弦函數(shù)的值域,即可得到所求最大值.
解答 解:(Ⅰ) 將A、B化為直角坐標(biāo)為A(2cosπ,2sinπ)、$B(2cos\frac{4π}{3},2sin\frac{4π}{3})$,
即A、B的直角坐標(biāo)分別為A(-2,0)、$B(-1,-\sqrt{3})$,
即有${k_{AB}}=\frac{{-\sqrt{3}-0}}{-1+2}=-\sqrt{3}$,
可得直線AB的方程為$y-0=-\sqrt{3}(x+2)$,
即為$\sqrt{3}x+y+2\sqrt{3}=0$.
(Ⅱ)設(shè)M(2cosθ,sinθ),
它到直線AB距離$d=\frac{{|2\sqrt{3}cosθ+sinθ+2\sqrt{3}|}}{2}$
=$\frac{{|\sqrt{13}sin(θ+φ)+2\sqrt{3}|}}{2}$,(其中$tanφ=2\sqrt{3}$)
當(dāng)sin(θ+φ)=1時,d取得最大值,
可得${d_{max}}=\frac{{\sqrt{13}+2\sqrt{3}}}{2}$.
點評 本題考查直角坐標(biāo)和極坐標(biāo)的互化,直線方程的求法和運用,同時考查三角函數(shù)的輔助角公式和正弦函數(shù)的值域的運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -3 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題
根據(jù)統(tǒng)計資料,某工藝品廠的日產(chǎn)量最多不超過20件根據(jù)統(tǒng)計資料,每日產(chǎn)品廢品率與日產(chǎn)量(件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率=×100%) .已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤日正品贏利額日廢品虧損額)
(1)將該車間日利潤(千元)表示為日產(chǎn)量(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$] | B. | [-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1] | C. | ($\frac{3}{5}$,$\frac{3}{4}$] | D. | [-$\frac{3}{4}$,-$\frac{3}{5}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40+8$\sqrt{3}$ | B. | 48+8$\sqrt{3}$ | C. | 40+16$\sqrt{3}$ | D. | 48+16$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.2 | B. | 1.6 | C. | 1.8 | D. | 2.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com