1.已知函數(shù)y=ax3+bx2,當x=1時,函數(shù)有極大值3
(1)求a,b的值
(2)求函數(shù)y的極小值.

分析 (1)求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的極大值建立方程關(guān)系進行求解即可.
(2)根據(jù)函數(shù)極值的定義進行求解即可.

解答 解:(1)函數(shù)的導(dǎo)數(shù)f′(x)=3ax2+2bx,
∵當x=1時,函數(shù)有極大值3
∴$\left\{\begin{array}{l}{f(1)=3}\\{f′(1)=0}\end{array}\right.$,得$\left\{\begin{array}{l}{a+b=3}\\{3a+2b=0}\end{array}\right.$.得$\left\{\begin{array}{l}{a=-6}\\{b=9}\end{array}\right.$,
經(jīng)檢驗x=1是函數(shù)的極大值,
故a=-6,b=9.
(2)當a=-6,b=9時,f(x)=-6x3+9x2,
f′(x)=-18x2+18x,
由f′(x)>0得0<x<1,
由f′(x)<0得x>1或x<0,
即當x=1時函數(shù)取得極大值3,
當x=0時,函數(shù)取得極小值f(0)=0.

點評 本題主要考查函數(shù)極值的求解和應(yīng)用,根據(jù)函數(shù)極值和函數(shù)導(dǎo)數(shù)之間的關(guān)系,建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

設(shè)分別是橢圓的左右焦點,上一點,且軸垂直,直線的另一個交點為

(1)若直線的斜率為,求的離心率;

(2)若直線軸上的截距為2,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某程序框如圖所示,該程序運行后輸出的k的值是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

若當時,不等式恒成立,則實數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

按如下圖所示的流程圖,輸出的結(jié)果為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$,(t為參數(shù)),在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,圓M的方程為ρ2-6ρsinθ=-8.
(1)求圓M的直角坐標方程;
(2)若直線l截圓M所得弦長為$\sqrt{3}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,A,B的極坐標分別為A(2,π),$B(2,\frac{4π}{3})$.
(Ⅰ)求直線AB的直角坐標方程;
(Ⅱ)設(shè)M為曲線C上的動點,求點M到直線AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個幾何體的三視圖如圖所示,正視圖與俯視圖為全等的等腰三角形,側(cè)視圖由半圓和等腰直角三角形組成,則該幾何體的體積為$\frac{π+2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,已知∠BAC=90°,AB=AC=1,BB1=2,∠ABB1=60°.
(1)證明:AB⊥B1C;
(2)若B1C=2,求三棱錐B1-CC1A的體積.

查看答案和解析>>

同步練習(xí)冊答案