8.若函數(shù)f(x)=ex-ax在(1,+∞)上單調(diào)增,則實(shí)數(shù)a的最大值為e.

分析 根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系,再分離參數(shù),求出最值即可.

解答 解:f′(x)=ex-a
∵函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)遞增?函數(shù)f′(x)=ex-a≥0在區(qū)間(1,+∞)上恒成立,
∴a≤[ex]min在區(qū)間(1,+∞)上成立.
而ex>e,
∴a≤e.
故答案為:e.

點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,正確把問題等價(jià)轉(zhuǎn)化、熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:①d<0;②S11>0;③S12<0;④S8>S5,其中正確命題序號(hào)是(  )
A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在極坐標(biāo)系中,與圓ρ=2cosθ相切,且與極軸平行的直線的極坐標(biāo)方程是ρsinθ=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,-1)的距離與到直線x=-1的距離和的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),則△PF1F2的周長為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直線l與圓C:x2+y2+2x-4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1).
(1)若圓C的半徑為$\sqrt{3}$,求實(shí)數(shù)a的值;
(2)若弦AB的長為4,求實(shí)數(shù)a的值;
(3)求直線l的方程及實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.兩條直線A1x+B1y+C1=0,A2x+B2y+C2=0互相垂直的充分必要條件是( 。
A.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=-1$B.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=1$C.A1A2+B1B2=0D.A1A2-B1B2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.角α終邊上一點(diǎn)的坐標(biāo)為(1,2),則tan2α=$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊答案