【題目】函數(shù),則下列結(jié)論中不正確的是(

A.曲線存在對稱中心B.曲線存在對稱軸

C.函數(shù)的最大值為D.

【答案】A

【解析】

求得函數(shù)的對稱軸、最值來判斷BC選項的正確選,利用放縮法判斷D選項的正確性,利用反證法判斷A選項的結(jié)論錯誤.

,故曲線關(guān)于對稱,故B正確;

由于,

時,分母取得最小值2,此時分子剛好取得最大值1,故函數(shù)的最大值為,故C正確.

畫出的圖像如下圖所示,由圖可知.

所以,故D正確.

由于,所以不是奇函數(shù),圖像不關(guān)于原點對稱.而,所以原點在函數(shù)圖像上.

假設A選項正確,即存在點為常數(shù))是的對稱中心,由上述分析可知不是原點.則原點關(guān)于的對稱點為

①,

由于,所以在函數(shù)圖像上,關(guān)于的對稱點為,

②,

由①②得,

,

其判別式,方程無解.

故不存在的對稱中心,所以A選項錯誤.

故選:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,若對任意均有成立,求實數(shù)的取值范圍;

2)設直線與曲線和曲線相切,切點分別為,,其中.

①求證:;

②當時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間和極值點;

2)若單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解該市教師年齡分布情況,對年齡在內(nèi)的5000名教師進行了抽樣統(tǒng)計,根據(jù)分層抽樣的結(jié)果,統(tǒng)計員制作了如下的統(tǒng)計表格:

年齡區(qū)間

教師人數(shù)

2000

1300

樣本人數(shù)

130

由于不小心,表格中部分數(shù)據(jù)被污染,看不清了,統(tǒng)計員只記得年齡在的樣本人數(shù)比年齡在的樣本人數(shù)多10,根據(jù)以上信息回答下列問題:

1)求該市年齡在的教師人數(shù);

2)試根據(jù)上表做出該市教師按照年齡的人數(shù)頻率分布直方圖,并求該市教師年齡的平均數(shù)及方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,平行四邊形中,,,,中點.將沿折起,使平面平面,得到如圖②所示的四棱錐.

1)求證:平面平面

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是邊長為2的正方形.平面,且

1)求證:平面平面

2)線段上是否存在一點,使三棱錐的高若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,曲線由左半橢圓和圓軸右側(cè)的部分連接而成, , 的公共點,點, (均異于點, )分別是, 上的動點.

Ⅰ)若的最大值為,求半橢圓的方程;

Ⅱ)若直線過點,且, ,求半橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):

已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務過程中的固定支出為每年10萬元.

(1)求保險公司在該業(yè)務所或利潤的期望值;

(2)現(xiàn)有如下兩個方案供企業(yè)選擇:

方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;

方案2:企業(yè)與保險公司合作,企業(yè)負責職工保費的70%,職工個人負責保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求過點的切線方程;

(2)當時,求函數(shù)的最大值;

(3)證明:當時,不等式對任意均成立(其中為自然對數(shù)的底數(shù), ).

查看答案和解析>>

同步練習冊答案