精英家教網 > 高中數學 > 題目詳情

【題目】曲線的參數方程為為參數),是曲線上的動點,且是線段的中點,點的軌跡為曲線,直線的極坐標方程為,直線與曲線交于兩點.

1)求曲線的普通方程和直線的直角坐標方程;

2)寫出過點的直線的參數方程,并求的值.

【答案】12為參數);

【解析】

1)設,則,由點在曲線上可將M點的坐標代入曲線參數方程中得點P的軌跡方程,再將參數方程轉化為普通方程即可;利用兩角和的正弦公式及可將直線l的極坐標方程化為普通方程;

2)利用點M的坐標求出直線的參數方程,與曲線的普通方程聯(lián)立得關于t的一元二次方程,根據t的幾何意義可得結果.

1)設,由條件知,因為點在曲線上,

所以,即,

所以曲線的普通方程.

直線的方程為,由知直線l的直角坐標方程為.

2)點在直線上,則直線的參數方程為為參數),

代入曲線的普通方程得:

,

所以.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】國家質量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛人員血液、呼吸酒精含量閥值與檢驗》國家標準,新標準規(guī)定,車輛駕駛人員血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經過反復試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:

該函數模型如下:

根據上述條件,回答以下問題:

(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?

(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)

(參數數據: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數據整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個小組的頻率之比為123,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數為10,則第4小組顧客的人數是______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元).當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知aR,函數f(x)=(-x2ax)ex(xR).

(1)a=2時,求函數f(x)的單調區(qū)間;

(2)若函數f(x)(-1,1)上單調遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,側面底面,,為線段的中點.

1)求證:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】個相同的小球放到三個編號為的盒子中,且每個盒子內的小球數要多于盒子的編號數,則共有多少種放法( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某射手在一次射擊訓練中,射中10環(huán),9環(huán),8環(huán)、7環(huán)的概率分別是0.210.23,0.250.28,計算這個射手在一次射擊中:

1)射中10環(huán)或7環(huán)的概率; (2)不夠7環(huán)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《史記》中講述了田忌與齊王賽馬的故事:“田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬”.若雙方各自擁有上、中、下等馬各1匹,從中隨機選1匹進行1場比賽,則齊王的馬獲勝的概率為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案