精英家教網 > 高中數學 > 題目詳情
14.已知全集U=R,集合A={x|x<-1或x≥3},B={x|2x-1≤3}.求:
(1)A∪B;(2)A∩(CUB);(3)(CUA)∪(CUB).

分析 (1)根據并集的定義即可求出,
(2)先求出CUB,再根據交集的定義即可求出,
(3)求出CUA,根據并集的定義即可求出

解答 (1)解:由2x-1≤3得x≤2,即B={x|x≤2}.(2分)
則A∪B={x|x≤2或x≥3}(4分)
(2)由(1)知CUB={x|x>2}(6分)
∴A∩(CUB)={x|x≥3}(8分)
(3)又CUA={x|-1≤x<3}(10分)
∴(CUA)∪(CUB)={x|x≥-1}(12分)

點評 本題考查交并補集的混合運算,通過已知的集合的全集,按照補集的運算法則分別求解,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.已知集合A={x|x(x-2)≥3},函數f(x)=x2-2x-1在[-1,2]上的值域為集合B.
(1)求(∁RA)∩B;
(2)若集合D={x|1-m<x<2m},且B⊆D,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知函數f(x)=x3-ax2-bx+c有兩個極值點x1,x2,若x1<x2,則f(x)=x1-x2的解的個數為( 。
A.1B.2C.3D.不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,AD=2,${B_1}A={B_1}D=\sqrt{5}$,$BA=BD=\sqrt{2}$,E,F分別是AD,B1C的中點.
(Ⅰ)求證:EF∥面ABB1A1;
(Ⅱ)設二面角B1-AD-B的大小為60°,求證:直線BB1⊥平面ABCD.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.用一個長寬為4,高為6的長方體原件,加工成一個最大的球,則利用率(球體積與原件體積之比)為$\frac{8π}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若實數x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-y-1≤0}\end{array}\right.$,則x+y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.在曲線y=x2上的點_______處的傾斜角為$\frac{π}{4}$( 。
A.(0,0)B.($\frac{1}{2}$,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{16}$)D.(2,4)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.設拋物線y2=8x的焦點為F,準線為l,P是拋物線上一點,PA⊥l,A為垂足,若直線PF的傾斜角為120°,則|PF|等于( 。
A.2B.$\frac{8}{3}$C.3D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.下列命題中所有正確的序號是④⑤.
①存在$x∈(0,\frac{π}{2})$,使$sinx+cosx=\frac{1}{3}$;
②存在區(qū)間(a,b),使y=cosx為減函數而sinx<0;
③y=tanx在定義域內為增函數;
④y=cos2x+sin($\frac{π}{2}$-x)有最大值2,且是偶函數;
⑤若函數f(x)=asin2x+btanx+1,且f(-3)=5,則f(π+3)=-3.

查看答案和解析>>

同步練習冊答案