15.根據(jù)e2=7.39,e3=20.08,判定方程ex-x-6=0的一個根所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 本題考查的是方程零點存在的大致區(qū)間的判斷問題.在解答時,應(yīng)先將方程的問題轉(zhuǎn)化為函數(shù)零點大致區(qū)間的判斷問題,結(jié)合零點存在性定理即可獲得解答.

解答 解:令f(x)=ex-x-6,
由表知f(2)=7.39-8<0,f(3)=20.09-9>0,
∴方程ex-x-6=0的一個根所在的區(qū)間為(2,3).
故選:D.

點評 本題考查的是方程零點存在的大致區(qū)間的判斷問題.在解答的過程當(dāng)中充分體現(xiàn)了函數(shù)與方程的思想、問題轉(zhuǎn)化的思想以及數(shù)據(jù)處理的能力.值得同學(xué)們體會和反思.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,PA,PB分別切圓O于A,B,過AB與OP的交點M作弦CD,連結(jié)PC,求證:$\frac{PC}{CM}=\frac{OD}{OM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面上,過點P作直線l的垂線所得的垂足稱為點P在直線l上的投影.若點P(-1,0)在直線ax-y-a-2=0上的投影是Q,則Q的軌跡方程是x2+(y+1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(I)如表所示是某市最近5年個人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計第6年該市的個人年平均收入(保留三位有效數(shù)字).
年份x12345
收入y(千元)2124272931
其中$\sum_{i=1}^{5}$xiyi=421,$\sum_{i=1}^{5}$xi2=55,$\overline{y}$=26.4
附1:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$
(II)如表是從調(diào)查某行業(yè)個人平均收入與接受專業(yè)培訓(xùn)時間關(guān)系得到2×2列聯(lián)表:
受培時間一年以上受培時間不足一年總計
收入不低于平均值602080               
收入低于平均值101020
總計7030100
完成上表,并回答:能否在犯錯概率不超過0.05的前提下認為“收入與接受培訓(xùn)時間有關(guān)系”.
附2:
P(K2≥k00.500.400.100.050.010.005
k00.4550.7082.7063.8416.6357.879
附3:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.(n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知角α的終邊經(jīng)過點P(12,5),則tanα的值為$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知p:|x-1|≤1,q:x2-2x-3≥0,則p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a,b∈R,且a>b,則( 。
A.|a|>|b|B.lg(a-b)>0C.${({\frac{1}{2}})^a}<{({\frac{1}{2}})^b}$D.2a>3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=acos2x+(a-1)(cosx+1),記|f(x)|的最大值為A.
(1)當(dāng)a=2時,求A;
(2)當(dāng)a>0時,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某人居住在城鎮(zhèn)的A處,準(zhǔn)備開車到單位B處上班,若該地各路段發(fā)生堵車事件都是相互獨立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如圖(例如A→C→D算兩個路段:設(shè)路段AC發(fā)生堵車事件的概率為$\frac{1}{10}$,路段CD發(fā)生堵車事件的概率為$\frac{1}{15}$).
(1)請你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最;
(2)若記路線A→C→F→B中遇到堵車的次數(shù)為隨機變量ξ,求ξ的數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊答案