分析 (I)求導(dǎo)數(shù),分類(lèi)討論,利用導(dǎo)數(shù)的正負(fù)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)已知g(x)+xf(x)=-x,則g(x)=xlnx-ax2,g′(x)=lnx-2ax+1,進(jìn)一步得出g(x1)=$a{{x}_{1}}^{2}-{x}_{1}$,再確定0<a<$\frac{1}{2}$且0<x1<$\frac{1}{2a}$<x2,即可證明結(jié)論.
解答 (I)解:f(x)=ln$\frac{1}{x}$+ax-1=-lnx+ax-1,定義域是(0,+∞)
∴f′(x)=$\frac{ax-1}{x}$.
a>0時(shí),令f′(x)=0,得x=$\frac{1}{a}$,0<x<$\frac{1}{a}$,f′(x)<0,x>$\frac{1}{a}$,f′(x)>0,
∴函數(shù)的單調(diào)減區(qū)間是(0,$\frac{1}{a}$),單調(diào)增區(qū)間是($\frac{1}{a}$,+∞);
a<0,f′(x)<0在(0,+∞)上恒成立,函數(shù)單調(diào)遞減;
(Ⅱ)證明:已知g(x)+xf(x)=-x,則g(x)=xlnx-ax2,g′(x)=lnx-2ax+1,
∵函數(shù)g(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),
∴g′(x)在定義域上有兩個(gè)零點(diǎn)x1,x2(x1<x2),
∴x1,x2是lnx-2ax+1=0的兩個(gè)根,
∴l(xiāng)nx1-2ax1+1=0,
∴g(x1)=$a{{x}_{1}}^{2}-{x}_{1}$,
∵g′(x)=lnx-2ax+1,
∴g″(x)=$\frac{1-2ax}{x}$.
a<0時(shí),g″(x)>0恒成立,∴g′(x)在(0,+∞)內(nèi)單調(diào)遞增,∴g′(x)至多一個(gè)零點(diǎn);
a>0時(shí),令g″(x)=0得x=$\frac{1}{2a}$,0<x<$\frac{1}{2a}$,g″(x)>0,x>$\frac{1}{2a}$,g″(x)<0,
∴g′(x)max=g′($\frac{1}{2a}$)=ln$\frac{1}{2a}$=-ln2a>0,
∴0<a<$\frac{1}{2}$且0<x1<$\frac{1}{2a}$<x2,
∵g(x1)=$a{{x}_{1}}^{2}-{x}_{1}$,拋物線(xiàn)開(kāi)口向上,對(duì)稱(chēng)軸為x=$\frac{1}{2a}$,
∴g(x1)<0.
點(diǎn)評(píng) 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,不等式的證明,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com