10.根據(jù)下列圖案中的圓圈排列規(guī)則,猜想第5個(gè)圖形中的圓圈個(gè)數(shù)為21.

分析 設(shè)第n個(gè)圖案的點(diǎn)的個(gè)數(shù)為f(n),可得f(n)-f(n-1)=2(n-1),n-1個(gè)式子相加,由等差數(shù)列的求和公式可得結(jié)果.

解答 解:設(shè)第n個(gè)圖案的點(diǎn)的個(gè)數(shù)為an,由題意可得f(1)=1,f(2)=3,f(3)=7,f(4)=13,
故f(2)-f(1)=2,f(3)-f(2)=4,f(4)-f(3)=6,…,
由此可推得f(n)-f(n-1)=2(n-1),以上n-1個(gè)式子相加可得:
f(2)-f(1)+f(3)-f(2)+f(4)-f(3)+…+f(n)-f(n-1)=2+4+6+…+2(n-1),
化簡可得f(n)-1=$\frac{1}{2}$(n-1)(2+2n-2)=n(n-1),故f(n)=n(n-1)+1,
∴f(5)=5×4+1=21,
故答案為:21

點(diǎn)評(píng) 本題考查歸納推理,構(gòu)造數(shù)列并得出數(shù)列的特點(diǎn)是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖為平面中兩個(gè)全等的直角三角形,將這兩個(gè)三角形繞著它們的對(duì)稱軸(虛線所在直線)旋轉(zhuǎn)一周得到一個(gè)幾何體,則該幾何體的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.貴陽市某中學(xué)高三(2)班排球隊(duì)和籃球隊(duì)各有10名同學(xué),現(xiàn)測得排球隊(duì)10人的身高(單位:cm)分別是:162,170,171,182,163,158,179,168,183,168,籃球隊(duì)10人的身高(單位:cm)分別是:170,159,162,173,181,165,176,168,178,179.
(1)請(qǐng)把兩隊(duì)身高數(shù)據(jù)記錄在圖中所示的莖葉圖中,并求出兩個(gè)隊(duì)的身高的平均數(shù);
(2)現(xiàn)從兩隊(duì)所在身高超過178cm的同學(xué)中隨機(jī)抽取三明同學(xué),則恰好兩人來自排球隊(duì)一人來自籃球隊(duì)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a1=3,a2=6,且an+2=an+1-an,則a2016=( 。
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^x},x≥1\end{array}$,則f(-2)+f(2)=( 。
A.3B.6C.7D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=1,\overrightarrow{|b}|=2$,$\overrightarrow a與\overrightarrow b$的夾角為60°,則“m=1”是“$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}中,a1=3,a10=21,通項(xiàng)an是項(xiàng)數(shù)n的一次函數(shù),
①求{an}的通項(xiàng)公式,并求a2009;
②若{bn}是由a2,a4,a6,a8,…,組成,試歸納{bn}的一個(gè)通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某電腦公司有6名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如表:
推銷員編號(hào)12345
工作年限x年35679
推銷金額y萬元23345
(1)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(2)若第6名產(chǎn)品推銷員的工作年限為11年,試估計(jì)他的年推銷金額.
參考公式:$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline{.y}}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.書架上有2本數(shù)學(xué)書,2本物理書,從中任意取出2本,則取出的兩本書都是數(shù)學(xué)書的概率為$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案