【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,證明:對任意的,.
【答案】(Ⅰ) 當(dāng)時,區(qū)間單調(diào)遞增; 當(dāng)時,在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減; (Ⅱ)證明見解析.
【解析】
試題分析:(Ⅰ)求函數(shù)單調(diào)區(qū)間,只要求出導(dǎo)數(shù),在定義域內(nèi)解不等式得增區(qū)間,解不等式得減區(qū)間,由于中含有參數(shù),應(yīng)按進行分類討論;(Ⅱ)要證的不等式就是,為此我們記,求出它的最小值,證明最小值大于0即可.這可由導(dǎo)數(shù)的知識易得.
試題解析:(Ⅰ)函數(shù)的定義域是
當(dāng)時,
對任意恒成立,
所以,函數(shù)在區(qū)間單調(diào)遞增;
當(dāng)時,
由得,由得
所以,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減。
(Ⅱ)當(dāng)時,,要證明,
只需證明,設(shè),
則問題轉(zhuǎn)化為證明對任意的,
令得,
容易知道該方程有唯一解,不妨設(shè)為,則滿足
當(dāng)變化時,和變化情況如下表
- | |||
遞減 | 遞增 |
因為,且,所以,因此不等式得證。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積為.
(1)求橢圓的方程;
(2)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條直線l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求滿足下列條件的a,b值.
(Ⅰ)l1⊥l2且l1過點(﹣3,﹣1);
(Ⅱ)l1∥l2且原點到這兩直線的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖(如圖).
(Ⅰ)求的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(Ⅱ)從盒子中隨機抽取個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前三項分別為λ,6,3λ,前n項和為Sn,且Sk=165.
(1)求λ及k的值;
(2)設(shè)bn=,且數(shù)列的前n項和Tn,證明:≤Tn<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三()班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題.
(1)求全班人數(shù)及分數(shù)在之間的頻數(shù),并估計該班的平均分數(shù);
(2)若要從分數(shù)在之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分數(shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為.
(1)求頻率分布直方圖中的值;
(2)從評分在的師生中,隨機抽取2人,求此人中恰好有1人評分在上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進行內(nèi)部整頓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;
(2)若函數(shù)(其中為的導(dǎo)函數(shù))存在三個零點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com