20.(理)定積分${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx的值為$\frac{25π}{4}$ 

分析 ${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx表示以原點為圓心,5為半徑的$\frac{1}{4}$個圓的面積.

解答 解:由題意${∫}_{0}^{5}$$\sqrt{25-{x}^{2}}$dx=$\frac{1}{4}π×{5}^{2}=\frac{25π}{4}$;
故答案為:$\frac{25π}{4}$.

點評 本題考查了利用定積分的幾何意義求定積分的值;屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.在三角形ABC中,a,b,c分別是角A,B,C的對邊,若b2=ac,且a2+bc=ac+c2
(Ⅰ)求角A的大。
(Ⅱ)求$\frac{bsinB}{c}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等差數(shù)列{an}的公差d=2,前n項的和為Sn.等比數(shù)列{bn}滿足b1=a1,b2=a4,b3=a13
(I)求{an},{bn}及數(shù)列{bn}的前n項和Bn
(II)記數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{m}$=(2,4),|$\overrightarrow{n}$|=$\sqrt{5}$,若$\overrightarrow{m}$,$\overrightarrow{n}$間的夾角為$\frac{π}{3}$,則|2$\overrightarrow{m}$-3$\overrightarrow{n}$|=$\sqrt{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.給出以下命題:
①雙曲線$\frac{y^2}{2}$-x2=1的漸近線方程為y=±$\sqrt{2}$x;
②命題P:?x∈R+,sinx+$\frac{1}{sinx}$≥1是真命題;
③已知線性回歸方程為$\widehaty$=3+2x,當變量x增加2個單位,其預報值平均增加4個單位;
④設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
則正確命題的序號為①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點,AC⊥BC,且AC=BC=2
(1)求證:AM⊥平面EBC
(2)(文)求三棱錐C-ABE的體積.
(2)(理)求二面角A-EB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對實數(shù)a和b,定義運算“⊕”:a⊕b=$\left\{\begin{array}{l}a,a-b≤1\\ b,a-b>1\end{array}$.若函數(shù)f(x)=(x2-2)⊕(x-x2)-c,x∈R有兩個零點,則實數(shù)c的取值范圍為$({-∞,-2}]∪({-1,-\frac{3}{4}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知全集U=R,集合A={x|x<-4,或x>2},B={x|-1≤2x-1-2≤6}.
(1)求A∩B、(∁UA)∪(∁UB);
(2)若集合M={x|2k-1≤x≤2k+1}是集合A的子集,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.定義$({\begin{array}{l}{{x_{n+1}}}\\{{y_{n+1}}}\end{array}})$=$({\begin{array}{l}1&0\\ 1&1\end{array}})({\begin{array}{l}{x_n}\\{{y_n}}\end{array}})$為向量$\overrightarrow{O{P_n}}$=(xn,yn)到向量$\overrightarrow{O{P_{n+1}}}$=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*,已知$\overrightarrow{O{P_1}}$=(2,0),則$\overrightarrow{O{P_{2016}}}$的坐標為(2,4030).

查看答案和解析>>

同步練習冊答案