3.求函數(shù)y=tan(x-$\frac{π}{4}$)的定義域.

分析 由條件利用對(duì)數(shù)函數(shù)的定義域,求得y=tan(x-$\frac{π}{4}$)的定義域.

解答 解:由于函數(shù)y=tan(x-$\frac{π}{4}$),∴x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈z,
求得x≠kπ+$\frac{3π}{4}$,k∈z,故函數(shù)的定義域?yàn)閧x|x≠kπ+$\frac{3π}{4}$,k∈z}.

點(diǎn)評(píng) 本題主要考查對(duì)數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F1、F2是橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的兩焦點(diǎn),過點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),在△AF1B中,若有兩邊之和是10,則第三邊的長度為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知有序數(shù)對(duì)(a,b)∈{(a,b)|a∈[0,4],b∈[0,4]},則方程x2-2ax+b=0有實(shí)根的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(α)=$\frac{sin(π+α)cos(2π-α)tan(-α)}{tan(-π-α)sin(-π-α)}$.
(1)化簡f(α);
(2)若α是第三象限的角,且sin(α-π)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-$\frac{31π}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)f(x)=x2-2ax在[-1,0]上的最大值M(a)和最小值m(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)直線l1的方程為y=$\frac{\sqrt{3}}{3}$x-1,求過點(diǎn)P(1,0),傾斜角是直線l1的傾斜角的2倍的l2直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=msinx+3cosx(m∈R),若函數(shù)f(x)的圖象與直線y=n(n為常數(shù))相鄰兩個(gè)交點(diǎn)的橫坐標(biāo)為x1=$\frac{π}{12}$,x2=$\frac{7π}{12}$,則函數(shù)f(x)的最大值是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,點(diǎn)A極坐標(biāo)為(4$\sqrt{2}$,$\frac{π}{4}$)直線l的坐標(biāo)方程為l:ρcos(θ-$\frac{π}{4}$)=a,且l過點(diǎn)A,曲線C1的參數(shù)方程$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).過B(-2,2)與直線l平行的直線l1與曲線交于M、N兩點(diǎn),求|$\overrightarrow{BM}$|•|$\overrightarrow{BN}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若以F1F2為直徑的圓與橢圓有交點(diǎn),則橢圓離心率e的取值范圍為(  )
A.[$\frac{1}{2}$,1)B.[$\frac{{\sqrt{2}}}{2}$,1)C.(0,$\frac{1}{2}$]D.(0,$\frac{{\sqrt{2}}}{2}}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案