1.已知a≥0,b≥0,求證:a6+b6≥ab(a4+b4).

分析 利用作差法,通過分類討論判斷即可.

解答 證明:a6+b6-ab(a4+b4)=(a-b)(a5-b5),
當(dāng)a≥b≥0時(shí),a5≥b5,a-b≥0,a5-b5≥0,可得(a-b)(a5-b5)≥0.所以a6+b6≥ab(a4+b4).
當(dāng)0≤a<b時(shí),a5<b5,a-b<0,a5-b5<0,可得(a-b)(a5-b5)>0.所以a6+b6>ab(a4+b4).
綜上a≥0,b≥0,a6+b6≥ab(a4+b4).

點(diǎn)評(píng) 本題考查不等式的證明,考查分類討論,作差法的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知公比q不為1的等比數(shù)列{an}的首項(xiàng)a1=$\frac{1}{2}$,前n項(xiàng)和為Sn,且a2+S2,a3+S3,a4+S4成等差數(shù)列,則q=$\frac{1}{2}$,S6=$\frac{63}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合M={x|log2(x-1)>0},集合N={x|x≥-2},則N∩∁RM=( 。
A.{x|x≤-2}B.{x|-2<x≤2}C.{x|-2≤x≤3}D.{x|-2≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,c=2,A≠B.
(I)求$\frac{asinA-bsinB}{sin(A-B)}$的值;
(2)若△ABC的面積為1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在四棱錐P-ABCD中,四條側(cè)棱長(zhǎng)均為2,底面ABCD為正方形,E為PC的中點(diǎn).若異面直線PA與BE所成的角為45°,則四棱錐的體積是( 。
A.4B.2$\sqrt{3}$C.$\frac{4}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.1B.log2$\frac{6}{5}$C.log2$\frac{7}{3}$D.log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若sin(θ-$\frac{π}{3}$)=$\frac{1}{3}$,0<θ<π,則cosθ=( 。
A.$\frac{-\sqrt{3}+2\sqrt{2}}{6}$B.$\frac{\sqrt{3}+2\sqrt{2}}{6}$C.$\frac{-\sqrt{3}±2\sqrt{2}}{6}$D.$\frac{\sqrt{3}±2\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正四棱錐底面邊長(zhǎng)為2cm,側(cè)面積為8cm2,則正四棱錐體積為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn=3n+k(k為實(shí)數(shù)),{bn}為等差數(shù)列,且2b4=a3
(1)求a3與k的值及{an}的通項(xiàng)公式;
(2)設(shè)b4是b2和b10的等比中項(xiàng),且數(shù)列{bn}的公差d≠0,求{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案