5.在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中,為了提高安保的級(jí)別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國的人員安排酒店住宿,這五個(gè)參會(huì)國要在a、b、c三家酒店選擇一家,且這三家至少有一個(gè)參會(huì)國入住,則這樣的安排方法共有( 。
A.96種B.124種C.130種D.150種

分析 由題意知五個(gè)參會(huì)國要在a、b、c三家酒店選擇一家,且這三家至少有一個(gè)參會(huì)國入住,可以把5個(gè)國家人分成三組,一種是按照1、1、3;另一種是1、2、2;當(dāng)按照1、1、3來分時(shí)共有C53A33,當(dāng)按照1、2、2來分時(shí)注意其中包含一個(gè)平均分組的問題,不要出錯(cuò).

解答 解:∵五個(gè)參會(huì)國要在a、b、c三家酒店選擇一家,且這三家至少有一個(gè)參會(huì)國入住,
∴可以把5個(gè)國家人分成三組,
一種是按照1、1、3;另一種是1、2、2
當(dāng)按照1、1、3來分時(shí)共有C53A33=60,
當(dāng)按照1、2、2來分時(shí)共有$\frac{{C}_{5}^{2}{C}_{3}^{2}}{{A}_{2}^{2}}$•A33═90,
根據(jù)分類計(jì)數(shù)原理知共有60+90=150,
故選D.

點(diǎn)評(píng) 本題考查排列組合與分類計(jì)數(shù)原理,是一個(gè)基礎(chǔ)題,對(duì)于復(fù)雜一點(diǎn)的計(jì)數(shù)問題,有時(shí)分類以后,每類方法并不都是一步完成的,必須在分類后又分步,綜合利用兩個(gè)原理解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.給出下列四個(gè)命題:①若α、β∈(0,$\frac{π}{2}$)且α<β,則sinα>sinβ;②若α∈(0,$\frac{π}{4}$),則cosα>sinα;③若α∈(0,$\frac{π}{2}$),則sinα+cosα>1;④若α∈(0,$\frac{π}{2}$),則sinα<α<tanα,以上四個(gè)命題中真命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將4本完全相同的小說,1本詩集全部分給4名同學(xué),每名同學(xué)至少1本書,則不同分法有(  )
A.24種B.28種C.32種D.16種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,若輸出的S的值為$\frac{5}{2}$,則實(shí)數(shù)k的取值范圍為( 。
A.[16,64]B.[16,32)C.[32,64)D.(32,64)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.函數(shù)f(x)=x2+ax+b,其中a∈R,b∈R且(b+4)2-a2=4,已知對(duì)任意的x∈R不等式f(x)≥-2恒成立.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)g(x)=$\left\{\begin{array}{l}{f(x)+x+4,x<f(x)}\\{f(x)-x,x≥f(x)}\end{array}\right.$,求g(x)的值域;
(3)是否存在實(shí)數(shù)m,n使得不等式m≤f(x)≤n的解集為[m,n]?若存在,求出m,n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求證:對(duì)任何實(shí)數(shù)x,y,z,下述三個(gè)不等式不可能同時(shí)成立:
①|(zhì)x|<|y-z|
②|y|<|z-x|
③|z|<|x-y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x|x-a|+b,x∈R.
(1)當(dāng)a=1,b=0時(shí),判斷f(x)的奇偶性,并說明理由;
(2)當(dāng)a=1,b=1時(shí),若f(2x)=$\frac{5}{4}$,求x的值;
(3)若b=-1且對(duì)任何x∈(0,1],不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知集合A={x|x2+2x-8≥0},B={x|x2-x-6≤0},C={x|x2-4ax+3a2≤0},若A∩B⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足a1=2,an+1-an=2(n∈N*),數(shù)列{bn}滿足b1=4,b3=14,且數(shù)列{bn-an}是各項(xiàng)均為正數(shù)的等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令cn=bn-2n,求數(shù)列{$\frac{1}{{c}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案