分析 (1)求出函數(shù)的定義域,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)g(x)的表達式,單調(diào)函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,由g(x)≥0得$\frac{1}{2}$a≥$\frac{lnx}{2x}$-x,令y=$\frac{lnx}{2x}$-x,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(1)函數(shù)f(x)的定義域是(0,+∞),
f′(x)=$\frac{(2x-1)(2x+1)}{2x}$,
令f′(x)>0,解得:x>$\frac{1}{2}$,
令f′(x)<0,解得:0<x<$\frac{1}{2}$,
故f(x)在(0,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,+∞)遞增;
(2)g(x)=x2-$\frac{1}{2}$lnx+$\frac{1}{2}$ax,
由g′(x)=$\frac{{4x}^{2}+ax-1}{2x}$>0,解得:x>$\frac{-a+\sqrt{{a}^{2}+16}}{8}$,
由g′(x)=$\frac{{4x}^{2}+ax-1}{2x}$<0,解得:x<$\frac{-a+\sqrt{{a}^{2}+16}}{8}$,
∴g(x)在(0,$\frac{{4x}^{2}+ax-1}{2x}$)遞減,在($\frac{-a+\sqrt{{a}^{2}+16}}{8}$,+∞)遞增,
又g(x)在(1,+∞)上沒有零點,
∴g(x)>0在(1,+∞)恒成立,
由g(x)≥0得$\frac{1}{2}$a≥$\frac{lnx}{2x}$-x,
令y=$\frac{lnx}{2x}$-x,則y′=$\frac{2-2lnx-{4x}^{2}}{{4x}^{2}}$,
當(dāng)x≥1時,y′<0,
∴y=$\frac{lnx}{2x}$-x在[1,+∞)遞減,
∴x=1時,ymax=-1,
∴$\frac{1}{2}$a≥-1,即a∈[-2,+∞).
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 80 | B. | 100 | C. | 120 | D. | 160 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{11}$ | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{13}$ | B. | 10 | C. | 2$\sqrt{37}$ | D. | 14 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com