如圖,在直三棱柱中,,,,點 是的中點,點在側(cè)棱上,且

(1)求二面角的大小;

(2)求點到平面的距離.

 

 

 

【答案】

(1)如圖,分別以軸、軸、軸建立空間直角坐標系

并設(shè),則,,, 

,  ∵,則

     

    設(shè)向量為平面的法向量,則,

       又

    ,令,則    

  由題意的中點,所以,又三棱柱為直三棱柱

    ∴平面,為平面的法向量

     

         ∴二面角的大小為----------8分

(2)向量在平面的法向量上的射影的長為

向量在平面的法向量上的投影長即為點到平面的距離.

    ∴點到平面的距離為 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二下期中理科數(shù)學試卷(解析版) 題型:解答題

如圖,在直三棱柱中, AB=1,,

∠ABC=60.

(1)證明:

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年天津市高三第二次月考文科數(shù)學 題型:解答題

(本小題滿分13分)如圖,在直三棱柱中,,分別為的中點,四邊形是邊長為的正方形.

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省高三2月月考理科數(shù)學 題型:解答題

如圖,在直三棱柱中,,的中點.

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆云南省高二9月月考數(shù)學試卷 題型:解答題

如圖,在直三棱柱中,,點的中點.

求證:(1);(2)平面.

 

 

 

查看答案和解析>>

同步練習冊答案