已知函數(shù)f(t)是奇函數(shù)且是R上的增函數(shù),若x,y滿足不等式f(x2-2x)≤-f(y2-2y),則x2+y2的最大值是
 
考點(diǎn):奇偶性與單調(diào)性的綜合,基本不等式
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性、單調(diào)性可把f(x2-2x)≤-f(y2-2y)化為x2-2x≤-y2+2y,即(x-1)2+(y-1)2≤2,作出點(diǎn)(x,y)的軌跡圖形,x2+y2的幾何意義可求.
解答: 解:∵f(t)是奇函數(shù),
∴f(x2-2x)≤-f(y2-2y)可化為f(x2-2x)≤f(-y2+2y),
又f(t)是R上的增函數(shù),
∴x2-2x≤-y2+2y,即(x-1)2+(y-1)2≤2,
則(x,y)的軌跡表示坐標(biāo)平面內(nèi)以M(1,1)為圓心,
2
為半徑的圓面,
作出圖象如圖所示:
x2+y2表示以點(diǎn)(x,y)到原點(diǎn)距離的平方,
由圖可知x2+y2的最大值是(2
2
)2
=8,
故答案為:8.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查圓的方程、兩點(diǎn)間距離公式,正確理解式子的幾何意義是解決該題的關(guān)鍵所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線ρsin(θ+
π
3
)=
1
2
與曲線
x=
1
2
(t+
1
t
)
y=t-
1
t
(t為參數(shù))相交于A,B兩點(diǎn),若M為線段AB的中點(diǎn),則直線OM的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的半徑為3,直徑AB上一點(diǎn)D使
AB
=3
AD
,E,F(xiàn)為另一直徑的兩個(gè)端點(diǎn),則
DE
DF
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,定義兩點(diǎn)P(x1,y1)、Q(x2、y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|,現(xiàn)有下列四個(gè)命題:
①已知兩點(diǎn)P(2,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點(diǎn)O到直線x-y+1=0上任一點(diǎn)P的直角距離d(O,P)的最小值為
2
2
;
③若|PQ|表示P、Q兩點(diǎn)間的距離,那么|PQ|≥
2
2
d(P,Q);
④設(shè)點(diǎn)A(x,y)且x,y∈Z,若點(diǎn)A在過(guò)P(0,2)與Q(5,7)的直線上,且點(diǎn)A到點(diǎn)P與Q的直角距離之和等于10,那么滿足條件的點(diǎn)A只有5個(gè).
其中是真命題的是
 
(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(2-3i)i(i是虛數(shù)單位)的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為1的正方體,它的內(nèi)切球的半徑為R1,與正方體各棱都相切的球的半徑為R2,正方體的外接球的半徑為R3,則R1,R2,R3依次為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{an}(n∈N*,an∈N*),若bk為a1,a2,a3,…,ak中的最大值,則稱(chēng)數(shù)列{bn}為數(shù)列{an}的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7.由此定義可知,自然數(shù)列1,2,3,…,n,…的“凸值數(shù)列”的通項(xiàng)公式bn=
 
;“凸值數(shù)列”為1,3,3,9,9的所有數(shù)列{an}的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,定義d(P,Q)=|x1-x2|+|y1-y2|為P(x1,y1),Q(x2,y2)兩點(diǎn)之間的“折線距離”.在這個(gè)定義下,給出下列命題:
①到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)正方形;
②到原點(diǎn)的“折線距離”等于1的點(diǎn)的集合是一個(gè)圓;
③到點(diǎn)P(-1,0),Q(1,0)兩點(diǎn)的“折線距離”相等的點(diǎn)的軌跡方程是x=0;
④到點(diǎn)P(-1,0),Q(1,0)兩點(diǎn)的“折線距離”的差的絕對(duì)值為1的點(diǎn)的集合是兩條平行線.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列選項(xiàng)中,p是q的必要不充分條件的是( 。
A、p:f(x)=x3+2x2+mx+1在R上單調(diào)遞增;q:m≥
4
3
B、p:x=1;q:x=x2
C、p:a+bi(a,b∈R)是純虛數(shù);q:a=0
D、p:a+c>b+d;q:a>b且c>d

查看答案和解析>>

同步練習(xí)冊(cè)答案