棱長為1的正方體,它的內(nèi)切球的半徑為R1,與正方體各棱都相切的球的半徑為R2,正方體的外接球的半徑為R3,則R1,R2,R3依次為
 
考點:球的體積和表面積
專題:空間位置關(guān)系與距離
分析:正方體的內(nèi)切球的直徑為正方體的棱長,外接球的直徑為正方體的對角線長,與正方體的棱相切的球的直徑是正方體的面對角線的長,求解即可.
解答: 解:正方體的內(nèi)切球的直徑為正方體的棱長,即:1,外接球的直徑為正方體的對角線長為:
3

正方體的棱相切的球的直徑是正方體的面對角線的長為:
2
,
所以,棱長為1的正方體,它的內(nèi)切球的半徑為R1,與正方體各棱都相切的球的半徑為R2,正方體的外接球的半徑為R3,則R1,R2,R3依次為
1
2
,
2
2
,
3
2

故答案為:
1
2
,
2
2
,
3
2
點評:本題是基礎(chǔ)題,考查正方體的外接球與內(nèi)切球的半徑,與正方體的棱相切球的半徑,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有
C
m
n+1
種取法.在這
C
m
n+1
種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有C
 
0
1
•C
 
m
n
+C
 
1
1
•C
 
m-1
n
=C
 
0
1
•C
 
m
n+1
,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.試根據(jù)上述思想化簡下列式子:C
 
m
n
+C
 
1
k
•C
 
m-1
n
+C
 
2
k
•C
 
m-2
n
+…+C
 
k
k
•C
 
m-k
n
=
 
(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知q是r的充分條件而不是必要條件,p是r的充分條件,s是r的必要條件,p是s的必要條件.現(xiàn)有下列命題:
①s是p的充要條件;
②r是p的必要條件而不是充分條件;
③q是p的充分條件而不是必要條件;
④r是s的充分條件而不是必要條件;
⑤?q是?s的必要條件而不是充分條件,
則正確命題序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0),若函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù),則正實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(t)是奇函數(shù)且是R上的增函數(shù),若x,y滿足不等式f(x2-2x)≤-f(y2-2y),則x2+y2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線L1:2x-y+1=0關(guān)于點P(2,1)的對稱直線L2的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,0)可以作曲線y=x3-ax2的兩條切線,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
5
1-2i
的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0,y>0,
1
x
+
9
y
=1時,x+y的最小值為( 。
A、10B、12C、14D、16

查看答案和解析>>

同步練習(xí)冊答案