16.下面幾種推理是合情推理的是(  )
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°歸納出所有三角形的內(nèi)角和是180°;
③一班所有同學(xué)的椅子都壞了,甲是一班學(xué)生,所以甲的椅子壞了;
④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形內(nèi)角和是(n-2)•180°.
A.①②④B.①③④C.②④D.①②③④

分析 欲判斷推理是不是合情推理、演繹推理,主要看是不是符合合情推理、演繹推理的定義,判斷一個(gè)推理過程是否是類比推理關(guān)鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個(gè)特殊的推理過程,類比推理的是看是否符合類比推理的定義.

解答 解:①為類比推理,在推理過程由圓的性質(zhì)類比出球的有關(guān)性質(zhì);
②為歸納推理,符合歸納推理的定義,即是由特殊到一般的推理過程;
③為演繹推理;
④為歸納推理,符合歸納推理的定義,即是由特殊到一般的推理過程.
故選:A.

點(diǎn)評 判斷一個(gè)推理過程是否是歸納推理關(guān)鍵是看他是否符合歸納推理的定義,即是否是由特殊到一般的推理過程.
判斷一個(gè)推理過程是否是類比推理關(guān)鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個(gè)特殊的推理過程.
判斷一個(gè)推理過程是否是演繹推理關(guān)鍵是看他是否符合演繹推理的定義,能否從推理過程中找出“三段論”的三個(gè)組成部分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,$\overrightarrow{BD}$=λ$\overrightarrow{DC}$.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1-A1C1-D的大小為60°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,棱長為4的正方體ABCD-A1B1C1D1,點(diǎn)A在平面α內(nèi),平面ABCD與平面α所成的二面角為30°,則頂點(diǎn)C1到平面α的距離的最大值是(  )
A.2(2+$\sqrt{2}$)B.2($\sqrt{3}$+$\sqrt{2}$)C.2($\sqrt{3}$+1)D.2($\sqrt{2}$+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E是BC上一點(diǎn)且BE=$\frac{2}{3}$BC,PB⊥AE.
(Ⅰ)求證:AB⊥平面PAE;
(Ⅱ)求點(diǎn)C到平面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AB=1,PA⊥平面PCD,PA=2$\sqrt{3}$,PD=2,E為線段DP上的一點(diǎn).
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)若二面角P-BC-E與二面角E-BC-D的大小相等,求DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,a∈R.
(1)解關(guān)于x的不等式g(x)>0;
(2)若對任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$g(x)恒成立,求a的取值范圍;
(3)證明:對任意x∈(0,+∞),lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,若直線l:x-2y+m-1=0在y軸上的截距為$\frac{1}{2}$,則實(shí)數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(2-t2)+f(t)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案