【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.

1)求數(shù)列的通項公式;

2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.

【答案】1,;(2

【解析】

1)由題意可得當時,,從而推出,則,從而可求出;

2)易知,利用錯位相減法求得,從而有不等式成立,對分奇偶數(shù)討論,令,利用換元法化為二次函數(shù),從而可求出答案.

解:(1,

時,(舍去)

時,由,得

兩式相減得:,

,∴

又∵數(shù)列為正項數(shù)列,故,也即,

∴數(shù)列為以1為首項1為公差的等差數(shù)列,

,

2)易知,則

①,

②,

②可得:,

,所以不等式成立,

n為偶數(shù),則,所以,

,則單調遞減,

故當時,,所以

n為奇數(shù),則,所以

,則單調遞增,

故當時,,所以,

綜上所述,的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在某藝術團組織的“微視頻展示”活動中,該團體將從微視頻的“點贊量”和“專家評分”兩個角度來進行評優(yōu).若A視頻的“點贊量”和“專家評分”中至少有一項高于B視頻,則稱A視頻不亞于B視頻.已知共有5部微視頻展,如果某微視頻不亞于其他4部視頻,就稱此視頻為優(yōu)秀視頻.那么在這5部微視頻中,最多可能有_______個優(yōu)秀視頻.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)若曲線方程中的參數(shù)是,且有且只有一個公共點,求的普通方程;

(2)已知點,若曲線方程中的參數(shù)是,,且相交于兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;

(Ⅱ)設直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求的單調區(qū)間;

(2)若對任意,都有成立,求實數(shù)的取值范圍;

(3)若過點可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點A(2,-1),和直線xy1相切,且圓心在直線y=-2x.

(1)求圓C的方程;

(2)已知直線l經(jīng)過(2,0)點,并且被圓C截得的弦長為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像相交于點兩點,若動點滿足,則點的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.

①存在點,使得//平面;

②對于任意的點,平面平面

③存在點,使得平面

④對于任意的點,四棱錐的體積均不變.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知z是實系數(shù)方程的虛根,記它在直角坐標平面上的對應點為,

1)若在直線上,求證:在圓上;

2)給定圓m、),則存在唯一的線段s滿足:①若在圓C上,則在線段s上;②若是線段s上一點(非端點),則在圓C上、寫出線段s的表達式,并說明理由;

3)由(2)知線段s與圓C之間確定了一種對應關系,通過這種對應關系的研究,填寫表(表中是(1)中圓的對應線段).

線段s與線段的關系

mr的取值或表達式

s所在直線平行于所在直線

s所在直線平分線段

查看答案和解析>>

同步練習冊答案