【題目】某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤額y對銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤額的大小.
其中
【答案】(1)見解析(2)(3)2.4(百萬元)
【解析】
(1)根據(jù)所給的這一組數(shù)據(jù),得到5個(gè)點(diǎn)的坐標(biāo),把這幾個(gè)點(diǎn)的坐標(biāo)在直角坐標(biāo)系中描出對于的點(diǎn),即可得到散點(diǎn)圖,可判斷為正相關(guān);
(2)根據(jù)這組數(shù)據(jù),利用最小二乘法求得的值,即可求解回歸直線的方程;
(3)利用作出的回歸直線方程,把的值代入方程,估計(jì)出對應(yīng)的的值.
(1)根據(jù)所給的這一組數(shù)據(jù),得到5個(gè)點(diǎn)的坐標(biāo):,把這幾個(gè)點(diǎn)的坐標(biāo)在直角坐標(biāo)系中描出對應(yīng)的點(diǎn),得到如下的散點(diǎn)圖:
(2)設(shè)回歸直線的方程是:,
由表格中的數(shù)據(jù),可得,
又由
,即
∴y對銷售額x的回歸直線方程為
(3)當(dāng)銷售額為4(千萬元)時(shí),利潤額為:=2.4(百萬元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品銷售價(jià)格和銷售量與銷售天數(shù)有關(guān),第x天的銷售價(jià)格(元/百斤),第x天的銷售量(百斤)(a為常數(shù)),且第7天銷售該商品的銷售收入為2009元.
(1)求第10天銷售該商品的銷售收入是多少?
(2)這20天中,哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若對于,恒成立,求實(shí)數(shù)的取值范圍;
(2)若對于,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,,,為線段的中點(diǎn),是線段上一動(dòng)點(diǎn).
(1)當(dāng)時(shí),求證:面;
(2)當(dāng)的面積最小時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢;若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢.
(1)摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?
(2)摸出的3個(gè)球?yàn)?/span>2個(gè)黃球1個(gè)白球的概率是多少?
(3)假定一天中有100人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下面四個(gè)命題:
①“若,則或”的逆否命題為“若且,則”
②“”是“”的充分不必要條件
③命題存在,使得,則:任意,都有
④若且為假命題,則均為假命題,其中真命題個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角,,的對邊分別是,且.
(1)求角的大;
(2)已知等差數(shù)列的公差不為零,若,且,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車制造商在2019年年初公告:公司計(jì)劃2019年的生產(chǎn)目標(biāo)為43萬輛.已知該公司近三年的汽車生產(chǎn)量如表所示:
年份(年) | 2016 | 2017 | 2018 |
產(chǎn)量(萬輛) | 8 | 18 | 30 |
如果我們分別將2016,2017,2018,2019定義為第一、二、三、四年.現(xiàn)在有兩個(gè)函數(shù)模型:二次函數(shù)模型,指數(shù)型函數(shù)模型,哪個(gè)模型能更好地反映該公司年產(chǎn)量y與年份x的關(guān)系?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com