分析 先求出兩直線2x+y-8=0與x-2y+1=0的交點為M(3,2),再分類討論,用待定系數(shù)法求得直線l的方程.
解答 解:由$\left\{\begin{array}{l}{2x+y-8=0}\\{x-2y+1=0}\end{array}\right.$ 求得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,可得兩直線2x+y-8=0與x-2y+1=0的交點為M(3,2),
當(dāng)直線經(jīng)過原點時,直線l的方程為y=$\frac{2}{3}$x,即2x-3y=0.
當(dāng)直線不經(jīng)過原點時,設(shè)直線l的方程為$\frac{x}{a}$+$\frac{y}{2a}$=1,把M(3,2)代入,可得$\frac{3}{a}+\frac{2}{2a}$=1,求得a=4,
可得直線l的方程為$\frac{x}{4}$+$\frac{y}{8}$=1,即2x+y-8=0.
綜上可得,直線l的方程為2x-3y=0或2x+y-8=0.
點評 本題主要考查用待定系數(shù)法求直線的方程,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北冀州市高二理上月考三數(shù)學(xué)試卷(解析版) 題型:填空題
已知為的外心,,若,且,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com