18.求經(jīng)過兩直線2x+y-8=0與x-2y+1=0的交點,且在y軸上的截距為在x軸上截距的兩倍的直線l的方程.

分析 先求出兩直線2x+y-8=0與x-2y+1=0的交點為M(3,2),再分類討論,用待定系數(shù)法求得直線l的方程.

解答 解:由$\left\{\begin{array}{l}{2x+y-8=0}\\{x-2y+1=0}\end{array}\right.$ 求得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,可得兩直線2x+y-8=0與x-2y+1=0的交點為M(3,2),
當(dāng)直線經(jīng)過原點時,直線l的方程為y=$\frac{2}{3}$x,即2x-3y=0.
當(dāng)直線不經(jīng)過原點時,設(shè)直線l的方程為$\frac{x}{a}$+$\frac{y}{2a}$=1,把M(3,2)代入,可得$\frac{3}{a}+\frac{2}{2a}$=1,求得a=4,
可得直線l的方程為$\frac{x}{4}$+$\frac{y}{8}$=1,即2x+y-8=0.
綜上可得,直線l的方程為2x-3y=0或2x+y-8=0.

點評 本題主要考查用待定系數(shù)法求直線的方程,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,已知$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{1}{sinC}$,且c=2.
(1)求ab的值;
(2)若△ABC的面積S=$\sqrt{3}$,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函數(shù).
(1)求φ的值.
(2)若f(x)圖象上的點關(guān)于M($\frac{3}{4}$π,0)對稱.
①求ω滿足的關(guān)系式;
②若f(x)在區(qū)間[0,$\frac{π}{2}$]上是單調(diào)函數(shù),求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知遞增的等比數(shù)列{an}的前n項和為Sn,a6=64,a4、a5的等差中項為3a3
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{n}{{a}_{2n-1}}$,求數(shù)列bn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求證:2sin2α•sin2β+2cos2α•cos2β=1+cos2α•cos2β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知菱形ABCD邊長為2,∠B=$\frac{π}{3}$,點P滿足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,λ∈R,若$\overrightarrow{BD}$•$\overrightarrow{CP}$=-3,則λ的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的方程為$\left\{\begin{array}{l}{x=m+t}\\{y=t}\end{array}\right.$(t為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$)
(1)把曲線C的方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(2)若曲線C上存在點P到直線l的距離為2$\sqrt{2}$,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知θ是第一象限角,且cosθ=$\frac{\sqrt{10}}{10}$,則$\frac{cos2θ}{sin2θ+co{s}^{2}θ}$的值是-$\frac{8}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北冀州市高二理上月考三數(shù)學(xué)試卷(解析版) 題型:填空題

已知的外心,,若,且,則 .

查看答案和解析>>

同步練習(xí)冊答案