分析 根據(jù)已知n≥2,an-an-1=3n-4,利用疊加法即可得出結(jié)論.
解答 解:∵an+1=an+3n-1,
∴n≥2,an-an-1=3n-4,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(3n-4)+[3(n-1)-4]+…+(3×2-4)+1
=2×$\frac{(n-1)(n+2)}{2}$-4(n-1)+1=n2-3n+3,
n=1時(shí),也成立,
∴數(shù)列{an}的通項(xiàng)公式為an=n2-3n+3.
點(diǎn)評(píng) 本題主要考查由遞推公式推導(dǎo)數(shù)列的通項(xiàng)公式,通過(guò)變形我們要發(fā)現(xiàn)數(shù)列的規(guī)律,轉(zhuǎn)化到等差或等比數(shù)列上來(lái),就會(huì)很容易解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,11) | B. | ($\frac{4}{3}$,3) | C. | ($\frac{2}{3}$,3) | D. | (2,-7) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{64}{3}$ | B. | $\frac{32}{3}$ | C. | 64 | D. | 32 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com