4.已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1,B2,且∠B1F1B2=90°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點(diǎn)F2的直線l與橢圓C相交于P、Q兩點(diǎn),且以線段PQ為直徑的圓經(jīng)過左焦點(diǎn)F1,求直線l的方程.

分析 (1)設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$,由橢圓的對(duì)稱性質(zhì),得到橢圓的標(biāo)準(zhǔn)方程.
(2)分當(dāng)直線l的斜率不存在時(shí)和直線斜率存在時(shí)兩種情況進(jìn)行討論,直線與橢圓聯(lián)立求得相關(guān)結(jié)論.

解答 解:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$,由橢圓的對(duì)稱性質(zhì),
知∠OF1B2=45°,所以短半軸長b=c=1,
所以a2=b2+c2=2.橢圓的標(biāo)準(zhǔn)方程為$\frac{x^2}{2}+{y^2}=1$.…(3分)
(Ⅱ)當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=1,$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ x=1\end{array}\right.$,解得$x=1,y=±\frac{{\sqrt{2}}}{2}$,設(shè)$P(1,\frac{{\sqrt{2}}}{2})$,$Q(1,-\frac{{\sqrt{2}}}{2})$,$\overrightarrow{{F_1}P}•\overrightarrow{{F_1}Q}=4-\frac{1}{2}=\frac{7}{2}≠0$,
∴∠PF1Q≠90°,不滿足條件.…(4分)
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x-1).$\left\{\begin{array}{l}{x^2}+2{y^2}=2\\ y=k(x-1)\end{array}\right.$,消去y并整理,得(1+2k2)x2-4k2x+2k2-2=0.…(6分)
設(shè)P(x1,y1),Q(x2,y2),∴${x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}}$,${x_1}•{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}$.…(7分)
由題意知∠PF1Q=90°,即$\overrightarrow{{F_1}P}•\overrightarrow{{F_1}Q}=0$.…(8分)
$\overrightarrow{{F_1}P}•\overrightarrow{{F_1}Q}=({x_1}+1)({x_2}+1)+{y_1}{y_2}$=$({x_1}+1)({x_2}+1)+{k^2}({x_1}-1)({x_2}-1)$
=$(1+{k^2}){x_1}{x_2}+(1-{k^2})({x_1}+{x_2})+1+{k^2}$=$(1+{k^2})•\frac{{2({k^2}-1)}}{{1+2{k^2}}}+(1-{k^2})•\frac{{4{k^2}}}{{1+2{k^2}}}+1+{k^2}$
=$\frac{{7{k^2}-1}}{{1+2{k^2}}}=0$,解得$k=±\frac{{\sqrt{7}}}{7}$.…(11分)
直線l的方程為:$x+\sqrt{7}y-1=0$和$x-\sqrt{7}y-1=0$.…(12分)

點(diǎn)評(píng) 本題主要考查橢圓性質(zhì)的應(yīng)用和直線與橢圓得位置關(guān)系的求解,在高考中屬于中檔題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一直集合M={(x,y)|y=x2+1},N={(x,y)|y=x+1},則M∩N=(  )
A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1或y=2}D.{y|y≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知S是邊長為a的等邊三角形ABC所在平面外一點(diǎn),SA=SB=SC,D為AB的中點(diǎn),且SD與BC所成的角為45°,求SD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,由圓x2+y2=9上一點(diǎn)M向x軸引垂線,垂足為N,設(shè)P為線段MN的中點(diǎn),當(dāng)點(diǎn)M變動(dòng)時(shí),選擇適當(dāng)?shù)膮?shù),求點(diǎn)P的軌跡的參數(shù)方程,并說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.氣球的體積V(單位:L)中沖入空氣,氣球中的空氣從1L到2L時(shí),氣球半徑r(單位:dm)的平均變化率約為0.16(dm/L).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求該函數(shù)的單調(diào)區(qū)間,最大、最小值;
(2)設(shè)g(x)=f(x+a),若g(x)的圖象關(guān)于y軸對(duì)稱,求實(shí)數(shù)a的最小正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)x∈R,M表示不超過x的最大整數(shù).給出下列結(jié)論:
①[3x]=3[x]
②若m,n∈R,則[m-n]≤[m]-[n];
③函數(shù)f(x)=x-[x]-定是周期函數(shù):
④若方程[x]=ax有且僅有3個(gè)解,則a∈($\frac{3}{4}$,$\frac{4}{5}$]∪[$\frac{4}{3}$,$\frac{3}{2}$).
其中正確的結(jié)論有②③.(請?zhí)钌夏阏J(rèn)為所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}共有12項(xiàng),其中a1=0,a5=-2,a12=3,且|ak+1-ak|=1(k=1,2,3,…11),則滿足這種條件的不同數(shù)列的個(gè)數(shù)為28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在正三角形ABC中,E、F、P分別是-AB、AC、BC邊上的點(diǎn),滿足AE:EB=CF:FA=CP:PB=1:2(如圖1).將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2).

(1)求證:A1E⊥平面BEP;
(2)求二面角B一A1P一F的余弦值的大。

查看答案和解析>>

同步練習(xí)冊答案