分析 不等式$\frac{1}{x}$+$\frac{9}{y}$≥m恒成立,得出m≤($\frac{1}{x}$+$\frac{9}{y}$)min,利用“乘1法”和基本不等式的性質即可得出
解答 解:∵x>0,y>0,x+y=6,
∴$\frac{1}{x}$+$\frac{9}{y}$=$\frac{1}{6}$×(x+y)×($\frac{1}{x}$+$\frac{9}{y}$)=$\frac{1}{6}$×(10$+\frac{y}{x}$$+\frac{9x}{y}$)≥$\frac{1}{6}$×(10+2$\sqrt{9}$)=$\frac{16}{6}$=$\frac{8}{3}$,當且僅當y=3x時取等號.
∴($\frac{1}{x}$+$\frac{9}{y}$)min=$\frac{8}{3}$
不等式($\frac{1}{x}$+$\frac{9}{y}$)≥m恒成立時,m$≤\frac{8}{3}$,
∴實數(shù)m的取值范圍是(-∞,$\frac{8}{3}$].
點評 本題考查了“乘1法”和基本不等式的性質、恒成立問題的等價轉化方法,考查了推理能力與計算能力,屬于基礎題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,2) | B. | (-2,0) | C. | (-4,0) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{5}{16}$ | B. | -$\frac{15}{16}$ | C. | -$\frac{25}{16}$ | D. | -$\frac{27}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com