18.設(shè)i為虛數(shù)單位,復(fù)數(shù)(2-i)z=1+i,則z的共軛復(fù)數(shù)$\overline z$在復(fù)平面中對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義即可得出.

解答 解:復(fù)數(shù)(2-i)z=1+i,
∴(2+i)(2-i)z=(2+i)(1+i),
∴z=$\frac{1+3i}{5}$
則z的共軛復(fù)數(shù)$\overline z$=$\frac{1}{5}$-$\frac{3}{5}$i在復(fù)平面中對(duì)應(yīng)的點(diǎn)$(\frac{1}{5},-\frac{3}{5})$在第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)M,N分別是曲線f(x)=-x3+x2(x<$\sqrt{e}$)與g(x)=alnx(x≥$\sqrt{e}$)上一點(diǎn),△MON是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是(0,$\frac{2}{e+1}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合A={x|x>2},B={x|x<4},則A∩B=(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)z=1-i(i為虛線單位),$\overline z$是z的共軛復(fù)數(shù),則z•$\overline z$的實(shí)部為( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給定一組數(shù)據(jù)x1,x2,…,x20,若這組數(shù)據(jù)期望為3,方差為3,則2x1+3,2x2+3,…,2x20+3的期望和方差分別為( 。
A.,3,6B.6,3C.9,6D.9,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={1,2,3,4,5,6,7,8,9},B={x|x=n2,n∈A},則A∩B的子集共有(  )
A.16個(gè)B.8個(gè)C.4個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是定義在D上的奇函數(shù),下列說(shuō)法錯(cuò)誤的是(  )
A.?x∈D,f(-x)+f(x)=0B.?x0∈D,f(-x0)+f(x0)=0
C.?x0∈D,[f(-x0)]2-[f(x0)]2≠0D.?x∈D,[f(-x)]2-[f(x)]2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.現(xiàn)用一半徑為10$\sqrt{2}$cm,面積為100$\sqrt{2}$πcm2的扇形鐵皮制作一個(gè)無(wú)蓋的圓錐形容器(假定銜接部分及鐵皮厚度忽略不計(jì),且無(wú)損耗),則該容器的容積為$\frac{1000π}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知下列各式,n∈N*,求通項(xiàng)公式an
(1)Sn=2n2+n;
(2)Sn=2n2+3n+1;
(3)an=5Sn+1;
(4)a1=1,an=2Sn(n≥2,n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案