定義A?B={z|z=xy+
x
y
,x∈A,y∈B}.設集合A={0,2},B={1,2}.(1)求集合A?B的所有元素之和.(2)寫出集合A?B的所有真子集.
考點:子集與真子集,子集與交集、并集運算的轉換
專題:集合
分析:(1)分別將A,B中的元素代入,從而求出A?B中的元素,進而求出元素之和;(2)由(1)A?B={0,4,5,},逐項寫出即可.
解答: 解:(1)A?B={0,4,5,},
集合所有元素和 9
(2){0} {4} {5} {0,4} {0,5} { 4,5}共7種可能.
點評:本題考查了集合問題,考查了子集和真子集問題,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

假設關于某種設備的使用年限x(年)與所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x23456
y235.56.58
(1)求出y關于x的線性回歸方程;
(2)估計使用年限期完成為10時的維修費用y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式ax2+2x+c≥0的解集為[-1,3],則對于函數(shù)f(x)=x2+2ax+c下列判斷正確的是(  )
A、f(1+a)<f(-a)<f(c)
B、f(-a)<f(1+a)<f(c)
C、f(1+a)<f(c)<f(-a)
D、f(c)<f(-a)<f(1+a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log3|x|的圖象的交點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達式;
(2)設g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)設g(x)=kx+1,若G(x)=
g(x)-f(x)
在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)
(Ⅰ)判斷函數(shù)f(x)在R上的單調性,并用單調函數(shù)的定義證明;
(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)g(x)=2
1
x
(x>0)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-2x,x≥3
2x+1,x<3
則f[f(1)]等于(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設實數(shù)x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=(a2+b2)x+y的最大值為8,則a+b的最小值為
 

查看答案和解析>>

同步練習冊答案