【題目】我國(guó)南宋數(shù)學(xué)家楊輝所著的詳解九章算術(shù)一書中,用圖的數(shù)表列出了一些正整數(shù)在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數(shù)表的規(guī)律是每行首尾數(shù)字均為1,從第三行開(kāi)始,其余的數(shù)字是它“上方”左右兩個(gè)數(shù)字之和現(xiàn)將楊輝三角形中的奇數(shù)換成1,偶數(shù)換成0,得到圖所示的由數(shù)字0和1組成的三角形數(shù)表,由上往下數(shù),記第n行各數(shù)字的和為,如,,,,則  

A. 2 B. 4 C. 8 D. 16

【答案】D

【解析】

根據(jù)題意,分析可得新的數(shù)表全奇數(shù)的行出現(xiàn)在的行數(shù),即第n次全行的數(shù)都為1的是第行,據(jù)此可得第16行全部為1,則;即可得答案.

根據(jù)題意題意,將楊輝三角中的奇數(shù)換成1,偶數(shù)換成0,

可得第1次全行的數(shù)都為1的是第2行,第2次全行的數(shù)都為1的是第4行,,

由此可知全奇數(shù)的行出現(xiàn)在的行數(shù),即第n次全行的數(shù)都為1的是第行,

,

則第16行全部為1,則;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)任意的,都存在,使得,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為

(1)設(shè)圓錐的母線長(zhǎng)為,求圓錐的體積;

(2)設(shè),、是底面半徑,且為線段的中點(diǎn),如圖.求異面直線所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場(chǎng)地OCDE及一矩形停車場(chǎng)EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動(dòng)場(chǎng)地與停車場(chǎng)占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場(chǎng)地與停車場(chǎng)占地總面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,方程為不相等的兩個(gè)正數(shù))所代表的曲線是( )

A. 三角形 B. 正方形 C. 非正方形的長(zhǎng)方形 D. 非正方形的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,離心率是,直線過(guò)點(diǎn)交橢圓于, 兩點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí), 的周長(zhǎng)為.

求橢圓的標(biāo)準(zhǔn)方程;

當(dāng)直線繞點(diǎn)運(yùn)動(dòng)時(shí),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)若函數(shù)存在5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),過(guò)、分別作直線、,使,.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知⊙,過(guò)拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 平面 , , , 為線段上的點(diǎn).

(1)證明: 平面;

(2)若的中點(diǎn),求與平面所成的角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案