3.命題“數(shù)列{an}前n項(xiàng)和是Sn=An2+Bn的形式,則數(shù)列{an}為等差數(shù)列”的逆命題,否命題,逆否命題這三個(gè)命題中,真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.0

分析 根據(jù)等差數(shù)列的前n項(xiàng)和是Sn=$\fracos9sao9{2}$n2+(a1-$\fraczozkttn{2}$)n的形式,逐一分析原命題的逆命題,否命題,逆否命題的真假,可得答案.

解答 解:命題“數(shù)列{an}前n項(xiàng)和是Sn=An2+Bn的形式,則數(shù)列{an}為等差數(shù)列”是真命題,
故逆否命題也是真命題;
逆命題“若數(shù)列{an}為等差數(shù)列,則數(shù)列{an}前n項(xiàng)和是Sn=An2+Bn的形式”為真命題,
故否命題也是真命題,
故選:C

點(diǎn)評(píng) 本題以命題的真假判斷應(yīng)用為載體,考查了四種命題,等差數(shù)列的性質(zhì)等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“a,b∈R+”是$\frac{a+b}{2}$≥$\sqrt{ab}$的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.圓x2+y2-6x+8y=0的半徑等于( 。
A.25B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=2時(shí),且函數(shù)f(x)滿足f(x1)=f(x2)(x1≠x2),求證x1+x2>4.
(參考公式:[ln(m-x)]'=$\frac{1}{x-m}$,m為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知命題p:“$\frac{{2{x^2}}}{m}$+$\frac{y^2}{m-1}$=1是焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程”,命題q:“不等式組$\left\{{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤-x+1}\\{y≤-2x+m}\end{array}}\right.$所表示的區(qū)域是三角形”.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)F1、F2分別是橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的左,右焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|-|PF1|的最小值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.直線4x-3y=0與直線3x+y-1=0夾角的正切值為( 。
A.$\sqrt{3}$B.$\frac{3}{4}$C.$\frac{13}{9}$D.$\frac{5\sqrt{10}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,在橢圓上的所有點(diǎn)到右焦點(diǎn)的距離的最大值為$\sqrt{2}$+1,則橢圓的方程為( 。
A.$\frac{{x}^{2}}{2}$+y2=1B.$\frac{{x}^{2}}{4}$+y2=1C.x2+$\frac{{y}^{2}}{2}$=1D.x2+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}是等比數(shù)列,且a1=1,a4=8.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)設(shè)${b_n}=a_n^{\;}+n$,求數(shù)列{bn}的前n項(xiàng)的和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案