【題目】有下列四種說法:
①命題“”為假,則、至少一個為假;
②命題“一次函數(shù)都是單調(diào)函數(shù)”的否定是“一次函數(shù)都不是單調(diào)函數(shù)”;
③動點到點 與到點的距離之和為2,則點的軌跡是焦點在軸上的橢圓;
④命題“若直線與雙曲線相切,則該直線與雙曲線只有一個公共點”的逆命題是真命題.
其中正確的有__________.(填寫序號)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計算下列各式的值:
(1) ﹣( )0+( )﹣0.5+ ;
(2)lg500+lg ﹣ lg64+50(lg2+lg5)2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組對象不能構(gòu)成一個集合的是( )
A.不超過20的非負(fù)實數(shù)
B.方程x2﹣9=0在實數(shù)范圍內(nèi)的解
C. 的近似值的全體
D.臨川十中2016年在校身高超過170厘米的同學(xué)的全體
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ (x≠0).
(1)判斷并證明函數(shù)在其定義域上的奇偶性;
(2)判斷并證明函數(shù)在(2,+∞)上的單調(diào)性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的左焦點F為圓的圓心,且橢圓C上的點到點F的距離最小值為。
(I)求橢圓C的方程;
(II)已知經(jīng)過點F的動直線與橢圓C交于不同的兩點A、B,點M坐標(biāo)為(),證明: 為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口船舶停靠的方案是先到先停.
(1)若甲乙兩艘船同時到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個數(shù),若兩數(shù)之和為偶數(shù),則甲先?浚蝗魞蓴(shù)之和為奇數(shù),則乙先?浚@種規(guī)則是否公平?請說明理由.
(2)根據(jù)以往經(jīng)驗,甲船將于早上到達(dá),乙船將于早上到達(dá),請應(yīng)用隨機(jī)模擬的方法求甲船先?康母怕剩S機(jī)數(shù)模擬實驗數(shù)據(jù)參考如下:記, 都是之間的均勻隨機(jī)數(shù),用計算機(jī)做了100次試驗,得到的結(jié)果有12次滿足,有6次滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實數(shù)a的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并給以證明;
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形, , .
(1)證明: ;
(2)若點在平面內(nèi)的射影,求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對稱軸方程;
(II)將函數(shù)的圖象上各點的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個單位,得到函數(shù)的圖象.若分別是△ABC三個內(nèi)角A,B,C的對邊,a=2,c=4,且,求b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com