分析 (1)利用定義判斷函數(shù)的奇偶性,先求定義域,再判斷f(-x)=$\frac{{x}^{2}-1}{{x}^{2}}$=f(x);
(2)直接求右表達(dá)式的最小值即可;
(3)得出g(x)=tf(x)+1=t(1-$\frac{1}{{x}^{2}}$)+1 (t≥0)在x∈[$\frac{1}{m}$,$\frac{1}{n}$]上遞增,可得出g($\frac{1}{m}$)=2-3m,g($\frac{1}{n}$)=2-3n,
構(gòu)造一方程m,n是t(1-x2)=2-3x的兩個(gè)不相等的正跟,利用二次函數(shù)和韋達(dá)定理得出t的范圍.
解答 (1)證明:函數(shù)的定義域?yàn)椋?∞,0)∪(0,+∞)關(guān)于原點(diǎn)對(duì)稱,
∵f(-x)=$\frac{{x}^{2}-1}{{x}^{2}}$=f(x),
∴f(x)為偶函數(shù);
(2)k≤xf(x)+$\frac{1}{x}$=x在x∈[1,3]上恒成立,
∴k≤1;
(3)g(x)=tf(x)+1=t(1-$\frac{1}{{x}^{2}}$)+1 (t≥0)在x∈[$\frac{1}{m}$,$\frac{1}{n}$]上遞增,
∴g($\frac{1}{m}$)=2-3m,g($\frac{1}{n}$)=2-3n,
∴t(1-m2)+1=2-3m,t(1-n2)+1=2-3n,
∴m,n是t(1-x2)+1=2-3x的兩個(gè)不相等的正跟,
∴tx2-3x+1-t=0(t>0),
∴△=9-4t(1-t)>0,
$\frac{3}{t}$>0,
$\frac{1-t}{t}$>0,
∴0<t<1.
點(diǎn)評(píng) 考查了奇偶性的判斷和恒成立問(wèn)題的轉(zhuǎn)換,利用構(gòu)造方程的思想,通過(guò)韋達(dá)定理得出參數(shù)t的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (-∞,0)∪($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,$\frac{\sqrt{2}+1}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>1 | B. | a≤1 | C. | a<-1 | D. | a≤-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{\sqrt{35}}{2}$ | D. | $\sqrt{35}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\sqrt{5}$ | B. | -$\frac{\sqrt{6}}{2}$ | C. | -$\sqrt{6}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com