16.設(shè)函數(shù)f(x)=3ax2-2(a+c)x+c(a>0,a,c∈R)
(1)若a=1,函數(shù)f(x)在區(qū)間(0,1)和(1,+∞)上各有一個(gè)零點(diǎn),求實(shí)數(shù)c的取值范圍;
(2)設(shè)a>0,若f(x)>-2cx+a對(duì)任意x∈[1,+∞)恒成立,求實(shí)數(shù)c的取值范圍;
(3)函數(shù)f(x)在區(qū)間(0,1)內(nèi)是否有零點(diǎn),如果有,請(qǐng)確定零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

分析 (1)將a=1代入f(x),根據(jù)二次函數(shù)的性質(zhì)得到關(guān)于a的不等式,解出即可;
(2)得到c>-3ax2+2ax+a,令g(x)=-3ax2+2ax+a,a>0,問(wèn)題轉(zhuǎn)化為即c>g(x)max,根據(jù)函數(shù)的單調(diào)性求出c的范圍即可;
(3)求出二次函數(shù)的對(duì)稱(chēng)軸,討論f(0)=c>0,f(1)=a-c>0,而f( $\frac{a+c}{3a}$)<0,根據(jù)根的存在性定理即可得到答案.

解答 解:(1)將a=1代入f(x),得:f(x)=3x2-2(1+c)c+c,
由函數(shù)f(x)在(0,1)和(1,+∞)上各有1個(gè)零點(diǎn)且函數(shù)開(kāi)口向上,
得:f(1)<0,即3-2(1+c)+c<0,解得:c>1;
(2)由f(x)>-2cx+a,將f(x)代入得:
3ax2-2(a+c)x+c>-2cx+a,
故c>-3ax2+2ax+a,
令g(x)=-3ax2+2ax+a,a>0,
f(x)>-2cx+a對(duì)任意x∈[1,+∞)恒成立,
即c>g(x)max,
g(x)=-3a${(x-\frac{1}{3})}^{2}$+$\frac{4}{3}$a,
由g(x)在x∈[1,+∞)遞減,g(x)max=g(1)=0,
∴c>0,
故實(shí)數(shù)c的范圍是(0,+∞);
(3)二次函數(shù)f(x)=3ax2-2(a+c)x+c圖象的對(duì)稱(chēng)軸是x=$\frac{a+c}{3a}$,
若f(0)=c>0,f(1)=a-c>0,而f( $\frac{a+c}{3c}$)=-$\frac{{(a-c)}^{2}+ac}{3a}$<0,
所以函數(shù)f(x)在區(qū)間(0,$\frac{a+c}{3a}$)和( $\frac{a+c}{3a}$,1)內(nèi)分別有一零點(diǎn).
故函數(shù)f(x)在區(qū)間(0,1)內(nèi)有兩個(gè)零點(diǎn);
若f(0)=c<0,f(1)=a-c>0,而f($\frac{a+c}{3a}$)=-$\frac{{(a-c)}^{2}+ac}{3a}$<0,
故函數(shù)f(x)在區(qū)間(0,1)內(nèi)有一個(gè)零點(diǎn).

點(diǎn)評(píng) 解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握二次函數(shù)的有關(guān)性質(zhì),以及根的存在性定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.拋物線y2=2px(p>0)上的動(dòng)點(diǎn)Q到焦點(diǎn)的距離的最小值為1,則p=2,準(zhǔn)線方程為x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知某企業(yè)1月份到6月份的利潤(rùn)X(單位:萬(wàn)元)受到市場(chǎng)的影響,是一個(gè)隨機(jī)變量,每個(gè)月的利潤(rùn)互不影響,且X的分布列如表所示:
X691218
Pa$\frac{1}{3}$$\frac{1}{10}$$\frac{1}{15}$
(1)求第1個(gè)月和第2個(gè)月的利潤(rùn)不都高于9萬(wàn)元的概率;
(2)求每個(gè)月的平均利潤(rùn);
(3)求證:4,5,6月份的總利潤(rùn)是1,2,3月份的總利潤(rùn)的3倍的概率為$\frac{1}{27000}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.動(dòng)直線2ax+(a+c)y+2c=0(a∈R,c∈R)過(guò)定點(diǎn)(m,n),x1+x2+m+n=15 且x1>x2,則$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{x}_{1}-{x}_{2}}$的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{(\frac{1}{2})^{x},x≤0}\end{array}\right.$,則滿足方程f(a)=1的所有a的取值構(gòu)成的集合為{2,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為了保護(hù)一件珍貴文物,博物館需要在一種無(wú)色玻璃的密封保護(hù)罩內(nèi)充入保護(hù)氣體.假設(shè)博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種氣體的體積比保護(hù)罩的容積少0.5立方米,且每立方米氣體費(fèi)用1千元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為8千元.
(1)求博物館支付總費(fèi)用y與保護(hù)罩容積V之間的函數(shù)關(guān)系式;
(2)求博物館支付總費(fèi)用的最小值;
(3)如果要求保護(hù)罩為正四棱柱形狀,高規(guī)定為2米,當(dāng)博物館需支付的總費(fèi)用不超過(guò)9.5千元時(shí),求保護(hù)罩底面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓的兩個(gè)焦點(diǎn)F1、F2都在y軸上,且a=5,c=3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,過(guò)橢圓的焦點(diǎn)F1的直線與橢圓交于A、B兩點(diǎn),求△ABF2的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知圓O的方程為x2+y2=4,P為圓O上的一個(gè)動(dòng)點(diǎn),若OP的垂直平分線總是被平面區(qū)域x2+y2≥a2覆蓋,則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.[0,1]C.[-2,2]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(1)=1,且f(x)是增函數(shù).
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0
(2)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1]、a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案