1.坐標(biāo)原點(0,0)關(guān)于直線x-2y+2=0對稱的點的坐標(biāo)是$(-\frac{4}{5},\frac{8}{5})$.

分析 利用中點坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系即可得出.

解答 解:設(shè)原點(0,0)關(guān)于直線x-2y+2=0對稱的點的坐標(biāo)是(a,b),
則$\left\{\begin{array}{l}{\frac{a}{2}-2×\frac{2}+2=0}\\{\frac{a}×\frac{1}{2}=-1}\end{array}\right.$,解得a=-$\frac{4}{5}$,b=$\frac{8}{5}$.
∴要求的對稱的點的坐標(biāo)是$(-\frac{4}{5},\frac{8}{5})$.
故答案為:$(-\frac{4}{5},\frac{8}{5})$.

點評 本題考查了中點坐標(biāo)公式、相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$sinα=\frac{m-3}{m+5}$,$cosα=\frac{4-2m}{m+5}$,$α∈(-\frac{π}{2},0)$,則tanα=( 。
A.$-\frac{4}{3}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.當(dāng)x,y滿足條件$\left\{\begin{array}{l}{x≥y}\\{y≥0}\\{2x+y-3≥0}\end{array}\right.$時,目標(biāo)函數(shù)z=x+3y的最小值是( 。
A.0B.1.5C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,若△ABC的面積S=a2-b2-c2+2bc,則sinA=$\frac{8}{17}$.(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)P1和P2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的兩點,線段P1P2的中點為M,直線P1P2不經(jīng)過坐標(biāo)原點O.
(1)若直線P1P2和直線OM的斜率都存在且分別為k1和k2,求證:k1k2=$\frac{b^2}{a^2}$;
(2)若雙曲線的焦點分別為${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,點P1的坐標(biāo)為(2,1),直線OM的斜率為$\frac{3}{2}$,求由四點P1、F1、P2、F2所圍成四邊形P1F1P2F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.有一列向量$\left\{{\overrightarrow{a_n}}\right\}$:$\overrightarrow{a_1}=({x_1},{y_1}),\overrightarrow{a_2}=({x_2},{y_2}),…,\overrightarrow{a_n}=({x_n},{y_n})$,如果從第二項起,每一項與前一項的差都等于同一個向量,那么這列向量稱為等差向量列.已知等差向量列$\left\{{\overrightarrow{a_n}}\right\}$,滿足$\overrightarrow{a_1}=(-20,13)$,$\overrightarrow{a_3}=(-18,15)$,那么這列向量$\left\{{\overrightarrow{a_n}}\right\}$中模最小的向量的序號n=4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知{an}是等比數(shù)列,給出以下四個命題:①{2a3n-1}是等比數(shù)列;②{an+an+1}是等比數(shù)列;③{anan+1}是等比數(shù)列;④{lg|an|}是等比數(shù)列,下列命題中正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為等邊三角形.將函數(shù)f(x)的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼摩斜叮瑢⑺脠D象向右平移$\frac{2π}{3}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象
(1)求函數(shù)g(x)的解析式;
(2)求h(x)=lg[g(x)-$\frac{5}{2}$]的定義域;
(3)若3sin2$\frac{x}{2}$-$\sqrt{3}$m[g(x)-1]≥m+2對任意x∈[0,2π]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,長軸在y軸上,若焦距為8,則m等于( 。
A.4B.8C.14D.38

查看答案和解析>>

同步練習(xí)冊答案