14.橢圓$\frac{{x}^{2}}{2}$+y2=1的內(nèi)接正方形面積是$\frac{8}{3}$.

分析 聯(lián)立$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,解出即可得出.

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,解得${x}^{2}={y}^{2}=\frac{2}{3}$.
∴橢圓$\frac{{x}^{2}}{2}$+y2=1的內(nèi)接正方形面積S=4x2=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.

點(diǎn)評 本題考查了橢圓的性質(zhì)、正方形的面積及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知橢圓C的右頂點(diǎn)為A,兩焦點(diǎn)坐標(biāo)分別為(-$\sqrt{3}$,0)和($\sqrt{3}$,0),且經(jīng)過點(diǎn)($\sqrt{3}$,$\frac{1}{2}$).過點(diǎn)O的直線交橢圓C于M、N兩點(diǎn),直線AM、AN分別交y軸于P、Q兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若$\overrightarrow{PM}$=λ$\overrightarrow{MA}$,且$\overrightarrow{MN}$⊥$\overrightarrow{MA}$,求實(shí)數(shù)λ的值;
(3)以線段PQ為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的一個(gè)焦點(diǎn)為(2,0),則橢圓的短軸長為(  )
A.2B.4C.6D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長軸長是短軸長的$\sqrt{3}$倍,且經(jīng)過點(diǎn)($\sqrt{3}$,1),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l經(jīng)過M與橢圓相交于A、B兩點(diǎn),若S△ABO=$\sqrt{3}$,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2.若橢圓上存在一點(diǎn)P,滿足線段PF2相切于以橢圓的短軸為直徑的圓,切點(diǎn)為線段PF2的中點(diǎn),則該橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{6}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l:x-y+m=0與橢圓C:$\frac{{x}^{2}}{2}$+y2=1交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)不在圓x2+y2=$\frac{5}{9}$內(nèi),則m的取值范圍為(  )
A.m≥1或m≤-1B.-$\sqrt{3}$≤m≤-1或1≤≤m≤$\sqrt{3}$C.-1≤m≤1D.-$\sqrt{3}$<m≤-1或1≤m<$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P,若$\overrightarrow{AP}$=$\sqrt{2}$$\overrightarrow{PB}$,則橢圓的離心率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓W:$\frac{x^2}{4}$+y2=1,直線l過點(diǎn)(0,-2)與橢圓W交于兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)C為AB的中點(diǎn),當(dāng)直線l的斜率為$\frac{3}{2}$時(shí),求線段OC的長;
(Ⅱ)當(dāng)△OAB面積等于1時(shí),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.己知C是半徑為1、圓心角為60°的圓弧上的動(dòng)點(diǎn),如圖,若$\overrightarrow{OC}$=x$\overline{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則x+y的最大值是( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4}{3}$C.2D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案