6.已知sinα=-$\frac{2}{3}$,α∈($\frac{3π}{2}$,2π)cosβ=-$\frac{5}{13}$,β是第三象限角,求cos(α-β)的值.

分析 利用同角三角函數(shù)的基本關(guān)系求得cosα和sinβ的值,再利用兩角差的余弦公式求得cos(α-β)的值.

解答 解:∵sinα=-$\frac{2}{3}$,α∈($\frac{3π}{2}$,2π),∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{5}}{3}$.
∵cosβ=-$\frac{5}{13}$,β是第三象限角,∴sinβ=-$\sqrt{{1-cos}^{2}β}$=-$\frac{12}{13}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{\sqrt{5}}{3}$•(-$\frac{5}{13}$)+(-$\frac{2}{3}$)•(-$\frac{12}{13}$)=$\frac{24-5\sqrt{5}}{39}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.平行直線2x-y=0和4x-2y+1=0之間的距離是$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.方程 $\frac{{x}^{2}}{m}$+y2=1表示焦點(diǎn)在x軸上的橢圓,則m的取值范圍為( 。
A.(1,+∞)B.($\frac{1}{2}$,+∞)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)k是給定的正整數(shù),對(duì)于滿足條件a1-a${\;}_{k+1}^{2}$=2的所有無窮等差數(shù)列{an},ak+1+ak+2+…+a2k+1的最大值$\frac{k+1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知cosα=$\frac{1}{3}$,則tan2$\frac{α}{2}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.點(diǎn)M在圓心為C1的方程x2+y2+6x-2y+1=0上,點(diǎn)N在圓心為C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為得到函數(shù)y=cos(x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=sin(x+$\frac{2π}{3}$)的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)長度單位B.向右平移$\frac{π}{6}$個(gè)長度單位
C.向左平移$\frac{5π}{6}$個(gè)長度單位D.向右平移$\frac{5π}{6}$個(gè)長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cosx=2m-1,且x∈R,則m的取值范圍是(  )
A.(-∞,1]B.[0,+∞)C.[-1,0]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$+$\overrightarrow$=(2,-8),$\overrightarrow{a}$-$\overrightarrow$=(-8,16),
(1)求$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo); 
(2)求$\overrightarrow{a}$•$\overrightarrow$的值;
(3)求$\overrightarrow{a}$與$\overrightarrow$夾角θ的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案