【題目】已知函數(shù)f(x)是定義在(﹣∞,+∞)上的偶函數(shù).當x∈(﹣∞,0)時,f(x)=x﹣x4 , 則當x∈(0,+∞)時,f(x)= .
【答案】﹣x4﹣x
【解析】解:設x∈(0,+∞),則﹣x∈(﹣∞,0),
∵當x∈(﹣∞,0)時,f(x)=x﹣x4 , ∴f(﹣x)=﹣x﹣x4 ,
∵f(x)是定義在(﹣∞,+∞)上的偶函數(shù),
∴f(x)=f(﹣x)=﹣x﹣x4 ,
所以答案是:﹣x4﹣x.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質的相關知識可以得到問題的答案,需要掌握在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)=ax2+bx+(b﹣1)(a≠0)
(1)當a=1,b=﹣2時,求函數(shù)f(x)的零點;
(2)若對任意實數(shù)b,函數(shù)恒有兩個相異的零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)﹣g(x)=x3+x2+1,則f(1)+g(1)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合U={1,2,3,4,5,6},M={2,3,5},N={4,6},則(UM)∩N=( )
A.{4,6}
B.{1,4,6}
C.
D.{2,3,4,5,6}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知l,m是兩條不同的直線,α,β是兩個不同的平面.下列命題:
①若lα,mα,l∥β,m∥β,則α∥β;
②若lα,l∥β,α∩β=m,則l∥m;
③若α∥β,l∥α,則l∥β;
④若l⊥α,m∥l,α∥β,則m⊥β.
其中真命題是(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義“規(guī)范01數(shù)列”{an}如下:{an}共有2m項,其中m項為0,m項為1,且對任意k≤2m,a1 , a2…ak中0的個數(shù)不少于1的個數(shù).若m=4,則不同的“規(guī)范01數(shù)列”共有個.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com