已知a>0,且a≠1,設命題p:0<a<1;q:方程ax2-x+
1
2
=0有兩個不等的實數(shù)根.若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.
考點:復合命題的真假
專題:簡易邏輯
分析:若命題q為真命題:則a>0,且△>0,解得a的范圍.由“p∧q”為假命題,“p∨q”為真命題,可得p與q必然一真一假.解出即可.
解答: 解:若命題q為真命題:則a>0,且△=1-2a>0,解得a
1
2
且a≠0,∴0<a<
1
2

∵“p∧q”為假命題,“p∨q”為真命題,
∴p與q必然一真一假.
而p假q真是不可能的,因此q假p真,可得
1
2
≤a<1

∴實數(shù)a的取值范圍是
1
2
≤a<1
點評:本題考查了一元二次方程有實數(shù)根與判別式的關系、簡易邏輯的判定,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知公比大于1的等比數(shù)列{an}中,a2=2且6是a1+3與a3+4的等差中項,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1+2b2+3b3+…+nbn=an,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列選項中不是右圖中幾何體的三種視圖之一的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設關于某設備的使用年限x(年)和所支出的維修費y(萬元)有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.83.55.06.57.2
由資料可知y和x呈線性相關關系,由表中數(shù)據(jù)算出線性回歸方程
y
=
b
x+
a
中的
b
=1.14
,據(jù)此估計,使用年限為10年時的維修費是
 
萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在(-1,1)內(nèi)有零點且單調(diào)遞增的是(  )
A、y=log
1
2
x
B、y=-x3
C、y=2x-1
D、y=x2-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,⊙M過原點且與坐標軸交于A(a,0),B(0,a)兩點,其中a>0.已知直線x+y-2=0截⊙M的弦長為
6
,則a為( 。
A、
7
4
B、
7
2
C、
7
2
D、
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的三邊長分別為5,5,6,設最大內(nèi)角為α,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,定圓C半徑為r,A為圓C上的一個定點,B為圓C上的動點,若點A,B,C不共線,且|
AB
-t
AC
|≥|
BC
|
對任意t∈(0,+∞)恒成立,則
AB
AC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點(x,y)的坐標x,y都是有理數(shù)時,該點稱為有理點,在半徑為r,圓心為(a,b)的圓中,若a∈Q,b∈Q,則這個圓上的有理點的數(shù)目為( 。
A、最多有一個
B、最多有兩個
C、最多有三個
D、可以有無窮多個

查看答案和解析>>

同步練習冊答案