【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時,已知汽車每小時的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度(千米小時)的函效:并求出當(dāng)時,汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;
(2)隨著汽車的折舊,運(yùn)輸成本會發(fā)生一些變化,那么當(dāng),此時汽車的速度應(yīng)調(diào)整為多大,才會使得運(yùn)輸成本最小,
【答案】(1),當(dāng)汽車以的速度行駛,能使得全稱運(yùn)輸成本最。
(2).
【解析】
(1)計算出汽車的行駛時間為小時,可得出全程運(yùn)輸成本為,其中,代入,,利用基本不等式求解;
(2)注意到時,利用基本不等式取不到等號,轉(zhuǎn)而利用雙勾函數(shù)的單調(diào)性求解。
(1)由題意可知,汽車從地到地所用時間為小時,
全程成本為,.
當(dāng),時,,
當(dāng)且僅當(dāng)時取等號,
所以,汽車應(yīng)以的速度行駛,能使得全程行駛成本最小;
(2)當(dāng),時,,
由雙勾函數(shù)的單調(diào)性可知,當(dāng)時,有最小值,
所以,汽車應(yīng)以的速度行駛,才能使得全程運(yùn)輸成本最小。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各名,將男性、女性使用微信的時間分成組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)根據(jù)女性頻率分布直方圖,估計女性使用微信的平均時間;
(2)若每天玩微信超過小時的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為“微信控”與“性別”有關(guān)?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點,動點M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點P滿足 = .
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)點Q在直線x=﹣3上,且 =1.證明:過點P且垂直于OQ的直線l過C的左焦點F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0),四點P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時間比在B地晚秒. A地測得該儀器彈至最高點H時的仰角為30°.
(1)求A、C兩地的距離;
(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是( 。
A.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
B.把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 個單位長度,得到曲線C2
C.把C1上各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
D.把C1上各點的橫坐標(biāo)縮短到原來的 倍,縱坐標(biāo)不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,,求g(x)的解析式;
(2)設(shè)計一個函數(shù)f(x)及一個α的值,使得;
(3)當(dāng)f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com