已知(2x+
a
x
5的展開式中各項系數(shù)之和為1,則該展開式中含
1
x
項的系數(shù)為
 
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:由于(2x+
a
x
5的展開式中各項系數(shù)之和為1,則可令x=1得,(2+a)5=1,即有a=-1.再由二項式展開式的通項公式,化簡整理,令x的次數(shù)為-1,求得r=3,即可得到對應(yīng)系數(shù).
解答: 解:由于(2x+
a
x
5的展開式中各項系數(shù)之和為1,
則可令x=1得,(2+a)5=1,即有a=-1.
則(2x-
1
x
5的展開式的通項公式為:Tr+1=
C
r
5
(2x)5-r(-
1
x
r=25-r
C
r
5
•(-1)r•x5-2r,
令5-2r=-1,則r=3,
則展開式中含
1
x
項的系數(shù)為:22
•C
3
5
•(-1)3=-40.
故答案為:-40.
點評:本題主要考查二項式定理,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y2=4x,點P(a,0)是x軸上的一點,經(jīng)過點P且斜率為1的直線l與拋物線相交于A,B兩點.
(1)當(dāng)點P在x軸上時,求線段AB的中點軌跡方程;
(2)若|AB|=4|OP|(O為坐標(biāo)原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和記為Sn,已知a10=17,a20=37.
(1)求通項an
(2)若sn=15,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=loga
x-3
x+3
的定義域為[s,t],值域為[loga(at-a),loga(as-a)].
(1)求證:s>3;
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式
ax
x-3
>1(a∈R)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)>0,f(1)=1.
(1)判斷f(x)的單調(diào)性;
(2)求f(x)在[-4,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
k
x
(k≠0),若f(2)>f(4),則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)>0(n∈N*),且f(2)=4,對任意n1、n2∈N*有f(n1+n2)=f(n1)+f(n2)恒成立,則猜想f(n)的一個表達式為( 。
A、f(n)=n2
B、f(n)=n+2
C、f(n)=2n
D、f(n)=2n

查看答案和解析>>

同步練習(xí)冊答案