15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=7,a6+a8=-6,則Sn取最大值時(shí),n的值為( 。
A.3B.4C.5D.6

分析 由已知結(jié)合等差數(shù)列的性質(zhì)求得a7,進(jìn)一步求得公差,代入等差數(shù)列的通項(xiàng)公式,由通項(xiàng)大于0求得答案.

解答 解:在等差數(shù)列{an}中,由a6+a8=-6,得2a7=-6,a7=-3,
又a2=7,∴$d=\frac{{a}_{7}-{a}_{2}}{7-2}=\frac{-3-7}{5}=-2$,
∴an=a2+(n-2)d=7-2(n-2)=11-2n.
由an=11-2n>0,得n$<\frac{11}{2}$,
∵n∈N*,
∴Sn取最大值時(shí),n的值為5.
故選:C.

點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)列{an}中,已知an≥2,a1=2,an+1+an-2=$\frac{1}{{a}_{n+1}-{a}_{n}}$,n∈N*
(1)求a2的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)k∈N,k≤$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{100}-1}$<k+1,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a+b>0”是“任意的x∈[0,1],ax+b>0恒成立”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)$F(\sqrt{3},0)$,點(diǎn)$M(-\sqrt{3},\frac{1}{2})$在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l過點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),過原點(diǎn)O作直線l的垂線,垂足為P,如果△OAB的面積為$\frac{λ|AB|+4}{2|OP|}$(λ為實(shí)數(shù)),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若一個(gè)函數(shù)存在定義域和值域相同的區(qū)間,則稱這個(gè)函數(shù)為這個(gè)區(qū)間上的一個(gè)“保城函數(shù)”,給出下列四個(gè)函數(shù):
①f(x)=-x3
②f(x)=3x;
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一個(gè)區(qū)間使其為保城函數(shù)的有(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,已知切線PA切圓于點(diǎn)A,割線PBC分別交圓于點(diǎn)B,C,點(diǎn)D在線段BC上,且DC=2BD,∠BAD=∠PAB,$PA=2\sqrt{10}$,PB=4,則線段AB的長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“$\frac{{a}^{2}+^{2}}{ab}$≤-2”是“a<0且b>0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=4cos($\frac{πx}{2}$+$\frac{π}{3}$),如果對(duì)于任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+3}{{x}^{2}+1}$,g(x)=x-ln(x-p).
(Ⅰ)求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{3}$,f($\frac{1}{3}$))處的切線方程;
(Ⅱ)判斷函數(shù)g(x)的零點(diǎn)個(gè)數(shù),并說明理由;
(Ⅲ)已知數(shù)列{an}滿足:0<an≤3,n∈N*,且3(a1+a2+…+a2015)=2015.若不等式f(a1)+f(a2)+..+f(a2015)≤g(x)在x∈(p,+∞)時(shí)恒成立,求實(shí)數(shù)p的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案