2.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日    期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個(gè))222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=bx+a;
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

分析 (1)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有C62種情況,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種,根據(jù)古典概型的概率公式得到結(jié)果.
(2)根據(jù)所給的數(shù)據(jù),求出x,y的平均數(shù),根據(jù)求線性回歸方程系數(shù)的方法,求出系數(shù)b,把b和x,y的平均數(shù),代入求a的公式,做出a的值,寫出線性回歸方程.

解答 解:(1)由題意知本題是一個(gè)古典概型,
設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件A
試驗(yàn)發(fā)生包含的事件是從6組數(shù)據(jù)中選取2組數(shù)據(jù)共有C62=15種情況,
每種情況都是等可能出現(xiàn)的其中,
滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有5種
∴P(A)=${P_{(A)}}=\frac{5}{15}=\frac{1}{3}$
(2)由數(shù)據(jù)求得$\overline x=11,\overline y=24$,
由公式求得$\hat$=$\frac{18}{7}$,
再由$\hat{a}$=$\overline{y}$-$\hat$$\overline{x}$ 求得a=-$\frac{30}{7}$
∴y關(guān)于x的線性回歸方程為$\widehaty=\frac{18}{7}x-\frac{30}{7}$

點(diǎn)評 本題考查線性回歸方程的求法,考查等可能事件的概率,考查線性分析的應(yīng)用,考查解決實(shí)際問題的能力,是一個(gè)綜合題目,這種題目可以作為解答題出現(xiàn)在高考卷中

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2016年春節(jié)期間全國流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如下:
金額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
頻數(shù)39171182
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的個(gè)數(shù)為( 。
①統(tǒng)計(jì)中用相關(guān)系數(shù)r來衡量兩個(gè)變量之間的線性關(guān)系的強(qiáng)弱.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱.
②回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$一定通過樣本點(diǎn)的中心$(\overline x,\overline y)$.
③為了了解某地區(qū)參加數(shù)學(xué)競賽的1003名學(xué)生的成績情況,準(zhǔn)備從中抽取一個(gè)容量為50的樣本,現(xiàn)采用系統(tǒng)抽樣的方法,需要從總體中剔除3個(gè)個(gè)體,在整體抽樣過程中,每個(gè)個(gè)體被剔除的概率和每個(gè)個(gè)體被抽到的概率分別是$\frac{3}{1003}$和$\frac{50}{1000}$.
④將一組數(shù)據(jù)中每個(gè)數(shù)都加上或者減去同一個(gè)常數(shù)后,方差恒不變.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在我校進(jìn)行的選修課結(jié)業(yè)考試中,所有選修“數(shù)學(xué)與邏輯”的同學(xué)都同時(shí)也選修了“閱讀與表達(dá)”的課程,選修“閱讀與表達(dá)”的同學(xué)都同時(shí)也選修了“數(shù)學(xué)與邏輯”的課程.選修課結(jié)業(yè)成績分為A,B,C,D,E五個(gè)等級(jí).某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績?yōu)锽的考生有10人,

(1)求該考場考生中“閱讀與表達(dá)”科目中成績?yōu)锳的人數(shù);
(2)現(xiàn)在從“數(shù)學(xué)與邏輯”科目的成績?yōu)锳和D的考生中隨機(jī)抽取兩人,則求抽到的兩名考生都是成績?yōu)锳的考生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在三棱錐S-ABC中,SA⊥平面ABC,AB=1,AC=SA=2,∠BAC=60°,則三棱錐S-ABC的外接球的表面積是( 。
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}的前n項(xiàng)和為Sn
(1)當(dāng){an}是等比數(shù)列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差數(shù)列時(shí),求an
(2)若{an}是等差數(shù)列,且S1+a2=3,S2+a3=6,求和:Tn=$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{3}-\frac{y^2}{6}=1$的離心率e=( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.邊長為2的兩個(gè)等邊△ABD,△CBD所在的平面互相垂直,則四面體ABCD的體積是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足${b_n}=\frac{1}{{{S_{n+1}}-1}}$,求其前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案