17.已知$\overrightarrow{a}$=(-3,4),$\overrightarrow$=(2,0),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影是(  )
A.-3B.3C.$-\frac{6}{5}$D.$\frac{6}{5}$

分析 根據(jù)向量投影的定義進行求解.

解答 解:向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$
=$\frac{-3×2+0}{2}$=-3,
故選:A.

點評 本題考查向量的投影,解題的關(guān)鍵是看出兩個向量之間是哪一個在哪一個向量上的投影,看清兩者之間的關(guān)系,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖$∠ABC=\frac{π}{4},O$為AB上一點,且3OB=3OC=2AB,又PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.
(1)求證:平面PBD⊥平面COD;
(2)求PD與平面BDC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(α)=$\frac{{sin(α-3π)•cos(2π-α)•sin(-α+\frac{3}{2}π)}}{cos(-π-α)•sin(-π-α)}$,
(1)化簡f(α);
(2)若α為第四象限角且sin(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=tan($\frac{π}{4}$-2x)的定義域是( 。
A.{x|x≠$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z}B.{x|x≠kπ+$\frac{3π}{4}$,k∈Z}C.{x|x≠$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z}D.{x|x≠kπ+$\frac{π}{4}$,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知等差數(shù)列{an}的前n項和為Sn,若a1>0,3a4=8a6,則當(dāng)Sn取最大值時n=( 。
A.4B.6C.7D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對于問題:已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0,給出如下解法:
解:由關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為($\frac{1}{2}$,3),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為$({\frac{1}{3},2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)隨機變量ξ的分布列為P(ξ=k)=$\frac{k}{n}$(k=1,2,3,4,5,6),則P(1.5<ξ<3.5)=$\frac{5}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若對于任意x>0,$\frac{{x}^{2}}{7{x}^{2}-4x+1}$≤a恒成立,則實數(shù)a的取值范圍是$[\frac{1}{3},∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)A(3,4,1),B(1,0,5),C(0,1,0),則AB中點M到點C距離為$\sqrt{14}$.

查看答案和解析>>

同步練習(xí)冊答案