16.復(fù)數(shù)z1=a2-2-3ai,z2=a+(a2+2)i,若z1+z2是純虛數(shù),那么實(shí)數(shù)a的值為( 。
A.1B.2C.-2D.1或-2

分析 直接利用復(fù)數(shù)的乘法運(yùn)算化簡(jiǎn),然后由實(shí)部為0且虛部不為0求解a的值.

解答 解:z1=a2-2-3ai,z2=a+(a2+2)i,z1+z2=a2-2+a+(a2+2-3a)i,
∵z1+z2是純虛數(shù),
∴a2+a-2=0,且a2+2-3a≠0,
解得:a=-2,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知雙曲線x2-y2=m與橢圓2x2+3y2=72有相同的焦點(diǎn),求m的值.
(2)求焦點(diǎn)在x軸正半軸上,并且經(jīng)過點(diǎn)P(2,-4)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)直線y=k(x-2)(k>0)與拋物線C:y2=16x交于A、B兩點(diǎn),點(diǎn)F為直線與x軸的交點(diǎn),且$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則k的值為( 。
A.$\frac{1}{4}$B.8C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2acos2$\frac{x}{2}$+2$\sqrt{3}$asin$\frac{x}{2}$cos$\frac{x}{2}$-a+b,且f($\frac{π}{3}$)=3,f($\frac{5π}{6}$)=1
(1)求a,b的值;
(2)求函數(shù)f(x)在[0,$\frac{π}{2}}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓mx2+ny2=1與直線x+y-1=0相交于A,B兩點(diǎn),過AB中點(diǎn)M與坐標(biāo)原點(diǎn)的直線的斜率為$\frac{{\sqrt{2}}}{2}$,則$\frac{m}{n}$=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知cosα-sinα=-$\frac{{\sqrt{3}}}{2}$,則sinα•cosα的值為(  )
A.$\frac{1}{8}$B.±$\frac{1}{8}$C.$\frac{1}{4}$D.±$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.執(zhí)行如圖的程序框圖,輸出s和n,則s的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知($\sqrt{x}$-$\frac{2}{x^2}$)n(n∈N*)的展開式中第五項(xiàng)的系數(shù)與第三項(xiàng)的系數(shù)的比是10:1.
(1)求n的值和展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開式中含${x}^{\frac{3}{2}}$的項(xiàng)和展開式中各項(xiàng)系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,面對(duì)角線AB1與體對(duì)角線BD1所成角等于$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案