【題目】根據(jù)題意解答
(1)利用“五點(diǎn)法”畫(huà)出函數(shù) 在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.
(2)并說(shuō)明該函數(shù)圖像可由y=sinx(x∈R)的圖像經(jīng)過(guò)怎樣平移和伸縮變換得到的.
【答案】
(1)
解:解、先列表,后描點(diǎn)并畫(huà)圖
(2)
解:把y=sinx的圖像上所有的點(diǎn)向左平移 個(gè)單位長(zhǎng)度,得到 的圖像,
再把所得圖像的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到 的圖像.
或把y=sinx的圖像橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到 的圖像.
再把所得圖像上所有的點(diǎn)向左平移 個(gè)單位長(zhǎng)度,得到 ,即 的圖像
【解析】(1)先列表如圖確定 的值,后描點(diǎn)并畫(huà)圖,利用“五點(diǎn)法”畫(huà)出函數(shù) 在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖.(2)依據(jù)y=sinx的圖像上所有的點(diǎn)向左平移 個(gè)單位長(zhǎng)度, 再把所得圖像的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到 或把y=sinx的圖像橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到 的圖像.
推出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知遞增等比數(shù)列{an}的第三項(xiàng)、第五項(xiàng)、第七項(xiàng)的積為512,且這三項(xiàng) 分別減去1,3,9后成等差數(shù)列.
(1)求{an}的首項(xiàng)和公比;
(2)設(shè)Sn=a12+a22+…+an2 , 求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距d(m)與車速v(km/h)和車身長(zhǎng)l(m)的關(guān)系滿足:d=kv2l+ l(k為正的常數(shù)),假定大橋上的車的車身長(zhǎng)都為4m,當(dāng)車速為60km/h時(shí),車距為2.66個(gè)車身長(zhǎng).
(1)寫(xiě)出車距d關(guān)于車速v的函數(shù)關(guān)系式;
(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過(guò)的車輛最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實(shí)數(shù)m的范圍;
(2)在方程表示圓時(shí),該圓與直線l:x+2y﹣4=0相交于M、N兩點(diǎn),且|MN|= ,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時(shí),不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+x(a∈R,a≠0).
(1)當(dāng)a>0時(shí),用作差法證明:f( )< [f(x1)+f(x2)];
(2)已知當(dāng)x∈[0,1]時(shí),|f(x)|≤1恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程是.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)求直線被曲線的截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生
表二:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(),焦點(diǎn)到準(zhǔn)線的距離為,過(guò)點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)若點(diǎn)焦點(diǎn)重合,且弦長(zhǎng),求直線的方程;
(Ⅱ)若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com