9.若直線(m+l)x+(n+l)y-2=0(m,n∈R)與圓(x-l)2+(y-1)2=1相切,則m+n的取值范圍是( 。
A.$[1-\sqrt{3},1+\sqrt{3}]$B.$(-∞,1-\sqrt{3}]∪[1+\sqrt{3},+∞)$C.$[2-2\sqrt{2},2+2\sqrt{2}]$D.$(-∞,2-2\sqrt{2}]∪[2+2\sqrt{2},+∞)$

分析 由圓的標(biāo)準方程找出圓心坐標(biāo)和半徑r,由直線與圓相切時,圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關(guān)系式,整理后利用基本不等式變形,設(shè)m+n=x,得到關(guān)于x的不等式,求出不等式的解集得到x的范圍,即為m+n的范圍.

解答 解:由圓的方程(x-1)2+(y-1)2=1,得到圓心坐標(biāo)為(1,1),半徑r=1,
∵直線(m+1)x+(n+1)y-2=0與圓相切,
∴圓心到直線的距離d=$\frac{|m+n|}{\sqrt{(m+1)^{2}+(n+1)^{2}}}$=1,
整理得:m+n+1=mn≤$(\frac{m+n}{2})^{2}$,
設(shè)m+n=x,則有x+1≤$\frac{{x}^{2}}{4}$,即x2-4x-4≥0,
∵x2-4x-4=0的解為:x1=2+2$\sqrt{2}$,x2=2-2$\sqrt{2}$,
∴不等式變形得:(x-2-2$\sqrt{2}$)(x-2+2$\sqrt{2}$)≥0,
解得:x≥2+2$\sqrt{2}$或x≤2-2$\sqrt{2}$,
則m+n的取值范圍為(-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞).
故選:D.

點評 此題考查了直線與圓的位置關(guān)系,涉及的知識有:點到直線的距離公式,基本不等式,以及一元二次不等式的解法,利用了轉(zhuǎn)化及換元的思想,當(dāng)直線與圓相切時,圓心到直線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知拋物線方程為y=4x2,則該拋物線的焦點坐標(biāo)為( 。
A.(0,1)B.$(0,\frac{1}{16})$C.(1,0)D.$(\frac{1}{16},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知復(fù)數(shù)$\frac{1+i}{1-i}$+i(2-i)=(m+2)-ni(m,n∈R),則m+n=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線3x+4y+2=0與(x-1)2+y2=r2圓相切,則該圓的半徑大小為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z1=$\frac{6+2i}{1-i}$與z2=a+bi(a,b∈R)互為共軛復(fù)數(shù),則( 。
A.a=2,b=-4B.a=2,b=4C.a=-2,b=-4D.a=-2,b=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求證:1+${C}_{n}^{1}$•(-2)+${C}_{n}^{2}$•(-2)2+…+${C}_{n}^{n}$•(-2)n=$\left\{\begin{array}{l}{1(n為偶數(shù),n∈{N}^{*})}\\{-1(n為奇數(shù),n∈{N}^{*})}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知如下算法語句

若輸入t=8,則下列程序執(zhí)行后輸出的結(jié)果是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.畫出不等式組$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$所表示的區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${∫}_{2}^{t}$(x-2)4dx的展開式中t2的系數(shù)是-16.

查看答案和解析>>

同步練習(xí)冊答案