如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn).
(Ⅰ)求證:CD⊥面ADE;
(Ⅱ)求證:平面ABCD⊥平面ADE.
考點(diǎn):平面與平面垂直的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由已知得CD⊥AD,CD⊥AE,由此能證明CD⊥面ADE.
(Ⅱ)由已知得AE⊥CD,CD⊥AD,從而CD⊥平面ADE,由此能證明平面ABCD⊥平面ADE.
解答: 證明:(Ⅰ)∵正方形ABCD所在平面與圓O所在平面相交于CD,
線段CD為圓O的弦,
AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn),
∴CD⊥AD,CD⊥AE,
又AD∩AE=A,∴CD⊥面ADE.
(Ⅱ)∵AE垂直于圓O所在平面,
CD在圓O所在平面上,AE⊥CD,
在正方形ABCD中,CD⊥AD,
AD∩AE=A,CD⊥平面ADE,
CD?平面ABCD,
∴平面ABCD⊥平面ADE.
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查平面與平面垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若已知函數(shù)g(x)=
mx2-3x+n
x2+1
(x∈R)的值域?yàn)閇2,8],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平面四邊形ABCD中,D為PA的中點(diǎn),PA⊥AB,CD∥AB,且PA=CD=2AB=4,將此平面四邊形ABCD沿CD折成直二面角P-DC-B,連接PA、PB,設(shè)PB的中點(diǎn)為E,
(Ⅰ)求證:平面PBD⊥平面PBC;
(Ⅱ)求直線AB與平面PBC所成角的正弦值;
(Ⅲ)在線段BD上是否存在一點(diǎn)F,使得EF⊥平面PBC?若存在,請(qǐng)確定點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:
(1)y=|x-2|;
(2)y=|x2+1|;
(3)y=|x+2|+|2x+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=0.6 -
1
3
,b=sin
1
2
,c=log2.51.7,比較a、b、c大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
k-2
+
y2
5-k
=1表示雙曲線,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是雙曲線
x2
9
-
y2
16
=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且|
PF1
|•|
PF2
|=32,則
PF1
PF2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足{0,1}⊆P?{0,1,2,3,4}的集合P的個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a3=2,a7=1,且數(shù)列{
1
an+1
}為等差數(shù)列,則a5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案