已知a=0.6 -
1
3
,b=sin
1
2
,c=log2.51.7,比較a、b、c大小.
考點(diǎn):對(duì)數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和三角函數(shù)的單調(diào)性求解.
解答: 解:∵a=0.6 -
1
3
>0.60=1,
0<b=sin
1
2
sin
π
6
=
1
2
,
1
2
=log2.5
2.5
<c=log2.51.7<log2.52.5=1,
∴a>c>b.
點(diǎn)評(píng):本題考查三個(gè)數(shù)大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和三角函數(shù)的單調(diào)性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用兩個(gè)平行平面去截半徑為R的球面,兩個(gè)截面圓的半徑r1=24cm,r2=15cm,兩截面間的距離為d=27cm,求球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列對(duì)應(yīng)是否構(gòu)成從A到B的映射.
(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;
(2)A=Z,B={-1,1},n為奇數(shù)時(shí),f(n)=-1,n為偶數(shù)時(shí),f(n)=1;
(3)A=B={1,2,3},f(x)=2x-1;
(4)A=B={x|x≥-1},f(x)=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且Sn=3n2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記Tn是數(shù)列{bn}的前n項(xiàng)和,若
bn
1
an
1
an+1
的等比中項(xiàng),求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線C1
x=
4
5
t
y=
3
5
t
(t為參數(shù)),曲線C2:ρ+
1
ρ
=2
2
sin(θ+
π
4
).
(1)求直線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)求直線C1被曲線C2所截的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點(diǎn).
(Ⅰ)求證:CD⊥面ADE;
(Ⅱ)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-2x2+3x-1的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意復(fù)數(shù)x+yi(x,y∈R),i為虛數(shù)單位,定義f(x+yi)=(x+y)+(x-y)i,則f(1+i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知g(x)=1-2x,f[g(x)]=x3,則f(3)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案