分析 連接CE,并延長交AD于F,連接BF,運用線面平行的性質定理可得EG∥BF,由G為BC的中點,可得E為CF的中點,設AF=t,再由向量的中點的向量表示,結合向量的數(shù)量積的性質,解得t=1,再由向量的模的公式,計算即可得到所求值.
解答 解:連接CE,并延長交AD于F,連接BF,
由EG∥平面ABD,EG?平面BCF,平面BCF∩平面ABD=BF,
可得EG∥BF,由G為BC的中點,可得E為CF的中點,
設AF=t,則$\overrightarrow{AE}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AF}$)=$\frac{1}{2}$($\overrightarrow{AC}$+$\frac{t}{4}$$\overrightarrow{AD}$),
在四面體ABCD中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{AC}$•$\overrightarrow{AD}$=$\overrightarrow{AB}$•$\overrightarrow{AD}$=4×4×$\frac{1}{2}$=8,
$\overrightarrow{AE}$•$\overrightarrow{BD}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\frac{t}{4}$$\overrightarrow{AD}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$($\overrightarrow{AC}$•$\overrightarrow{AD}$-$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\frac{t}{4}$$\overrightarrow{AD}$2-$\frac{t}{4}$$\overrightarrow{AD}$•$\overrightarrow{AB}$)
=$\frac{1}{2}$(8-8+$\frac{t}{4}$•16-$\frac{t}{4}$•8)=1,
解得t=1,即$\overrightarrow{AE}$=$\frac{1}{2}$($\overrightarrow{AC}$+$\frac{1}{4}$$\overrightarrow{AD}$),
可得|$\overrightarrow{AE}$|2=$\frac{1}{4}$($\overrightarrow{AC}$2+$\frac{1}{16}$$\overrightarrow{AD}$2+$\frac{1}{2}$$\overrightarrow{AC}$•$\overrightarrow{AD}$)
=$\frac{1}{4}$×(16+$\frac{1}{16}$×16+$\frac{1}{2}$×8)=$\frac{21}{4}$,
可得|$\overrightarrow{AE}$|=$\frac{\sqrt{21}}{2}$.
故答案為:$\frac{\sqrt{21}}{2}$.
點評 本題考查向量的模的求法,注意運用中點的向量的表示,考查向量的數(shù)量積的定義和性質,同時考查線面平行的性質定理的運用以及中位線定理的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,-2]∪(1,+∞) | B. | (-3,-2]∪(1,2) | C. | [-3,-2)∪(1,2] | D. | (-∞,-3]∪(1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com